• Title/Summary/Keyword: Carbon dioxide Emissions

Search Result 465, Processing Time 0.025 seconds

Development of Soil Organic Carbon Storage Estimation Model Using Soil Characteristics (토양 특성을 이용한 토양유기탄소저장량 산정 모형 개발)

  • Lee, Taehwa;Kim, Sangwoo;Shin, Yongchul;Jung, Younghun;Lim, Kyoung-Jae;Yang, Jae E;Jang, Won Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.1-8
    • /
    • 2019
  • Carbon dioxide is one of the major driving forces causing climate changes, and many countries have been trying to reduce carbon dioxide emissions from various sources. Soil stores more carbon dioxide(two to three times) amounts than atmosphere indicating that soil organic carbon emission management are a pivotal issue. In this study, we developed a Soil Organic Carbon(SOC) storage estimation model to predict SOC storage amounts in soils. Also, SOC storage values were assessed based on the carbon emission price provided from Republic Of Korea(ROK). Here, the SOC model calculated the soil hydraulic properties based on the soil physical and chemical information. Base on the calculated the soil hydraulic properties and the soil physical chemical information, SOC storage amounts were estimated. In validation, the estimated SOC storage amounts were 486,696 tons($3.526kg/m^2$) in Jindo-gun and shown similarly compared to the previous literature review. These results supported the robustness of our SOC model in estimating SOC storage amounts. The total SOC storage amount in ROK was 305 Mt, and the SOC amount at Gyeongsangbuk-do were relatively higher than other regions. But the SOC storage amount(per unit) was highest in Jeju island indicating that volcanic ashes might influence on the relatively higher SOC amount. Based on these results, the SOC storage value was shown as 8.4 trillion won in ROK. Even though our SOC model was not fully validated due to lacks of measured SOC data, our approach can be useful for policy-makers in reducing soil organic carbon emission from soils against climate changes.

Assessment of the Contribution of Poultry and Pig Production to Greenhouse Gas Emissions in South Korea Over the Last 10 Years (2005 through 2014)

  • Boontiam, Waewaree;Shin, Yongjin;Choi, Hong Lim;Kumari, Priyanka
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.12
    • /
    • pp.1805-1811
    • /
    • 2016
  • The goal of this study was to estimate the emissions of greenhouse gases (GHG), namely methane ($CH_4$), nitrous oxide ($N_2O$), and carbon dioxide ($CO_2$) from poultry and pig production in South Korea over the last 10 years (2005 through 2014). The calculations of GHG emissions were based on Intergovernmental Panel on Climate Change (IPCC) guidelines. Over the study period, the $CH_4$ emission from manure management decreased in layer chickens, nursery to finishing pigs and gestating to lactating sows, but there was a gradual increase in $CH_4$ emission from broiler chickens and male breeding pigs. Both sows and nursery to finishing pigs were associated with greater emissions from enteric fermentation than the boars, especially in 2009. Layer chickens produced lower direct and indirect $N_2O$ emissions from 2009 to 2014, whereas the average direct and indirect $N_2O$ emissions from manure management for broiler chickens were 12.48 and $4.93Gg\;CO_2-eq/yr$, respectively. Annual direct and indirect $N_2O$ emissions for broiler chickens tended to decrease in 2014. Average $CO_2$ emission from direct on-farm energy uses for broiler and layer chickens were 46.62 and $136.56Gg\;CO_2-eq/yr$, respectively. For pig sectors, the $N_2O$ emission from direct and indirect sources gradually increased, but they decreased for breeding pigs. Carbon dioxide emission from direct on-farm energy uses reached a maximum of $53.93Gg\;CO_2-eq/yr$ in 2009, but this total gradually declined in 2010 and 2011. For boars, the greatest $CO_2$ emission occurred in 2012 and was $9.44Gg\;CO_2-eq/yr$. Indirect $N_2O$ emission was the largest component of GHG emissions in broilers. In layer chickens, the largest contributing factor to GHG emissions was $CO_2$ from direct on-farm energy uses. For pig production, the largest component of GHG emissions was $CH_4$ from manure management, followed by $CO_2$ emission from direct on-farm energy use and $CH_4$ enteric fermentation emission, which accounted for 8.47, 2.85, and $2.82Gg-CO_2/yr$, respectively. The greatest GHG emission intensity occurred in female breeding sows relative to boars. Overall, it is an important issue for the poultry and pig industry of South Korea to reduce GHG emissions with the effective approaches for the sustainability of agricultural practices.

Performance Comparison of Molten Carbonate Fuel Cell Hybrid Systems Minimizing Carbon Dioxide Emissions (이산화탄소 배출을 최소화하는 용융탄산염 연료전지 하이브리드 시스템들의 성능 비교)

  • AHN, JI HO;YOON, SUK YOUNG;KIM, TONG SEOP
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.1
    • /
    • pp.30-39
    • /
    • 2017
  • Interests in fuel cell based power generation systems are on the steady rise owing to various advantages such as high efficiency, ultra low emission, and potential to achieve a very high efficiency by a synergistic combination with conventional heat engines. In this study, the performance of a hybrid system which combined a molten carbonate fuel cell (MCFC) and an indirectly fired micro gas turbine adopting carbon dioxide capture technologies was predicted. Commercialized 2.5 MW class MCFC system was used as the based system so that the result of this study could reflect practicality. Three types of ambient pressure hybrid systems were devised: one adopting post-combustion capture and two adopting oxy-combustion capture. One of the oxy-combustion based system is configured as a semi-closed type, while the other is an open cycle type. The post-combustion based system exhibited higher net power output and efficiency than the oxy-combustion based systems. However, the semi-closed system using oxy-combustion has the advantage of capturing almost all carbon dioxide.

Comparison of Carbon Dioxide Absorption in Aqueous MEA, DEA, TEA, and AMP Solutions

  • Kim, Young Eun;Lim, Jin Ah;Jeong, Soon Kwan;Yoon, Yeo Il;Bae, Shin Tae;Nam, Sung Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.783-787
    • /
    • 2013
  • The separation and capture process of carbon dioxide from power plants is garnering interest as a method to reduce greenhouse gas emissions. In this study, aqueous alkanolamine solutions were studied as absorbents for $CO_2$ capture. The solubility of $CO_2$ in aqueous alkanolamine solutions was investigated with a continuous stirred reactor at 313, 333 and 353 K. Also, the heat of absorption ($-{\Delta}H_{abs}$) between the absorbent and $CO_2$ molecules was measured with a differential reaction calorimeter (DRC) at 298 K. The solubility and heat of absorption were determined at slightly higher than atmospheric pressure. The enthalpies of $CO_2$ absorption in monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), and 2-amino-2-methyl-1-propanol (AMP) were 88.91, 70.44, 44.72, and 63.95, respectively. This investigation showed that the heat of absorption is directly related to the quantity of heat for absorbent regeneration, and is dependent on amine type and $CO_2$ loading.

Process of Community-based Sustainable CO2 Management

  • Park, Jae-Hyun;Hong, Tae-Hoon
    • Journal of Construction Engineering and Project Management
    • /
    • v.1 no.1
    • /
    • pp.11-17
    • /
    • 2011
  • According to the United Nations Framework Convention on Climate Change (UNFCCC), many countries around the world have been concerned with reducing Greenhouse Gas (GHG) emissions. Reducing the level of building energy consumption is particularly important in bringing GHG down. Because of this, many countries including the US and the EU are enforcing energy-related policies. However, these policies are focused on management of single types of buildings such as public buildings and office buildings, instead of management on a national level. Thus, although various policies have been enforced in many countries, $CO_2$ management on a national level is still not an area of focus. Therefore, this study proposed a community-based $CO_2$ management process that allows government-led GHG management. The minimum unit of the community in this study is a plot, and the process consists of three steps. First, the current condition of the GHG emission was identified by plot. Second, based on the identified results, the GHG emission reduction target was distributed per plot by reflecting the weighted value according to (i) the target $CO_2$ reduction in the buildings in the standard year, (ii) region, and (iii) building usage and size. Finally, to achieve the allocated target reduction, building energy management was executed according to the properties of the building located on each plot. It can be expected that the proposed community-based $CO_2$ management process will enable government-level GHG management, through which environment-friendly building construction can be promoted.

PROCESS OF COMMUNITY-BASED SUSTAINABLE CO2 MANAGEMENT

  • Jaehyun Park;Taehoon Hong
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.262-268
    • /
    • 2011
  • According to the United Nations Framework Convention on Climate Change (UNFCCC), many countries around the world have been concerned with reducing Greenhouse Gas (GHG) emissions. Reducing the level of building energy consumption is particularly important in bringing GHG down. Because of this, many countries including the US and the EU are enforcing energy-related policies. However, these policies are focused on management of single types of buildings such as public buildings and office buildings, instead of management on a national level. Thus, although various policies have been enforced in many countries, CO2 management on a national level is still not an area of focus. Therefore, this study proposed a community-based CO2 management process that allows government-led GHG management. The minimum unit of the community in this study is a plot, and the process consists of three steps. First, the current condition of the GHG emission was identified by plot. Second, based on the identified results, the GHG emission reduction target was distributed per plot by reflecting the weighted value according to (i) the target CO2 reduction in the buildings in the standard year, (ii) region, and (iii) building usage and size. Finally, to achieve the allocated target reduction, building energy management was executed according to the properties of the building located on each plot. It can be expected that the proposed community-based CO2 management process will enable government-level GHG management, through which environment-friendly building construction can be promoted.

  • PDF

Development of prediction methodology from CO2 emissions of construction equipment based multiple linear regression (다중선형회귀분석 기반 건설장비 이산화탄소 배출량 예측모델 개발)

  • Gwon, Jae-Min;Lee, Jae-Hak;Jo, Min-Do;Choi, Young-Jun;Han, Seung-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.38-39
    • /
    • 2019
  • Environmental problems caused by GHG emitted by various industries are emerging around the world, and accordingly, relevant regulations are being applied by countries around the world. Korea is operating a carbon credit system that trades GHG in industry for money, which is expected to be applied to the construction industry. In addition, construction equipment using fossil fuels accounts for the largest portion of $CO_2$ emissions in the construction industry, and the importance of $CO_2$ reduction and prediction is increasing. However, there is a lack of data on the directly measured $CO_2$ emissions of construction equipment and there is no accurate methodology for measuring methods. Therefore, in this study, independent variables were derived based on the $CO_2$ emission data. In addition, multiple linear regression is performed for each independent variable to derive a predictive model of carbon dioxide emission by work type of construction equipment. It is expected that the construction process plan based on environmental factors in the construction industry can be established in the future.

  • PDF

Factors Affecting and Techniques to Quantify $CH_4\;and\;N_2O$ Emissions from Stored Liquid Manure

  • Park, K.H.;Wagner-Riddle, Claudia
    • Journal of Animal Environmental Science
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2007
  • Stored animal manure is considered as a significant agricultural source of methane $(CH_4)$ and nitrous oxide $(N_2O)$ which have 23 and 297 times higher global warming effect when compared to carbon dioxide $(CO_2)$. Uncertainties caused by lack of understanding physical and biochemical environment in stored animal manure and by errors of emission measurement methods, even though many researches measuring $CH_4\;and\;N_2O$ emissions from stored manure have been conducted for a few decades. In this paper, general information of $CH_4\;and\;N_2O$ generation and emissions from stored animal manure and the measurement methods for quantifying $CH_4\;and\;N_2O$ emissions are discussed.

  • PDF

A Study on Greenhouse Gas Inventories for Regional Governments (A Case Study of Jeonbuk Province) (지자체 온실가스 인벤토리 구축연구 - 전라북도 사례)

  • Jang, Nam-Jung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.565-572
    • /
    • 2009
  • Greenhouse gas(GHG) inventories and basic strategies for Jeonbuk regional government were established to reduce greenhouse gas emissions. The method to construct GHG inventories of Jeonbuk followed the 'Revised IPCC 1996 Guidelines'which was used for the 'Third National Communication of the Republic of Korea under UNFCCC'. Korean government could use primary energy consumption for the energy industries section in the national GHG inventories. However, regional governments should use secondary energy consumption (included electricity consumption) for the energy industries section for their GHG inventories because they could not control the emission of energy transformation section. In the result of Jeonbuk GHG inventories in 2006, carbon dioxide($CO_2$) emissions from fuel combustion covered 87.1% of total emissions. Methane($CH_4$), carbon dioxide($CO_2$) from other sections, nitrous oxide($N_2O$) and F-gas(HFCs, PFCs, $SF_6$) accounted for 8.1, 2.2, 1.6 and 1.0% of total emissions, respectively. The sectional emission decreased in the order of the energy(88.0%), agriculture(7.6%), waste(2.3%) and industrial processes(2.1%) section. The energy industries section that contained electricity consumption was the most dominant emission source in the energy section. F-gas consumption, rice cultivation and waste incineration were main emission sources in the industrial processes, agriculture and waste section, respectively. In this study, basic directions of each section were established by the results of Jeonbuk GHG inventories in 2006.

Effects of Hydrogen Ratio on Combustion and Emissions Characteristics of Hydrogen/Diesel Dual-Fuel Engine (수소의 혼합 비율에 따른 수소/디젤 혼소 엔진의 연소 및 배기 특성 파악)

  • Park, Hyunwook;Bae, Choongsik
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.103-106
    • /
    • 2014
  • The effects of hydrogen ($H_2$) ratio on combustion and emission characteristics in a $H_2/diesel$ dual-fuel engine were investigated. Dual-fuel strategy was applied to improve the control of combustion phasing. The combustion phasing was retarded with increasing $H_2$ fraction. This can be explained by both reduced diesel concentration and chemical effect of $H_2$, which reduce the heat release rate during the low temperature reaction stage. Hydrocarbon and carbon monoxide emissions of the engine were decreased drastically when $H_2$ ratio was increased.

  • PDF