• Title/Summary/Keyword: Carbon dioxide (CO2)

Search Result 1,972, Processing Time 0.028 seconds

Effects of Heating Initiative Temperature and CO2 Fertilizing Concentration on the Growth and Yield of Summer Squash in a Greenhouse (온실 난방 개시온도와 CO2 시비 농도가 애호박의 생육과 수량에 미치는 영향)

  • Goo, Hei Woong;Kim, Eun Ji;Na, Hae Yeong;Park, Kyoung Sub
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.468-475
    • /
    • 2022
  • This study was conducted to find out the efficiency of heating initiative temperature and carbon dioxide fertilization in summer squash (Cucurbita moschata D.). The heating start temperature experiment was performed at 9℃, 12℃, and 15℃ using an electric heater and operated when the temperature was lower than the target temperature. The CO2 fertilization concentration experiment was performed from 7 to 12 with the control, 500 µmol·mol-1, and 800 µmol·mol-1 using liquefied carbon dioxide. Investigation items were plant height, stem diameter, number of leaves, leaf area, fresh weight, dry weight, also economic analysis was conducted by surveying only fruits exceeding 100 g. Photosynthesis was measured for the upper leaf position to calculate the saturation point according to the control. The photo saturation point was 587 µmol·m-2·s-1, and the CO2 saturation point was 702 µmol·mol-1. Amax values by carbon dioxide were 13.4, 17.8, 17.2, 19.6, and 17.5 µmolCO2·m-2·s-1 in the order of 9℃, 12℃, 15℃, 500 µmol·mol-1, and 800 µmol·mol-1. In the temperature experiment, 9℃ in growth did not grow normally and no fruiting was performed. 12℃ and 15℃ were higher than 9℃, but there was no significant difference in growth and production. The CO2 fertilization experiment showed no significant difference between the treatment in growth, but the productivity of 800 µmol·mol-1 was the best. Comprehensively, the heating initiative temperature of 15℃ was good for crop growth and production, but there is no significant difference from 12℃, so it is good to set the heating start temperature to 12℃ economically, and maintaining of 800 µmol·mol-1 is effective in increasing production.

Extraction Efficiencies of Organophosphorus Pesticides Spiked in Fish Tissues by Supercritical Carbon Dioxide (초임계 이산화탄소에 의한 어류조직 중 유기인계 농약의 첨가회수율)

  • Lim, Sang-Bin;Jwa, Mi-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.1163-1168
    • /
    • 1998
  • Fish tissues were spiked with organophosphorus pesticides (OPPs), mixed with a celite as a drying agent, and dynamically extracted with pure $CO_2$ or modified $CO_2$ for 10 min at different extraction temperatures, pressures and $CO_2$ flow rates. Recoveries of OPPs spiked in jacopever increased with the decrease of extraction temperature and pressure, and decreased with the increase of $CO_2$ flow rates. Modified $CO_2$ extractions with 10% methylene chloride showed a slight increase in the recoveries over pure $CO_2$ extraction. Quantity of fish tissues had great effect on their extraction efficiencies. Recoveries of OPPs were $66.7{\sim}86.3%$ for jacopever, $56.2{\sim}79.2%$ for yellow tail, $57.6{\sim}77.8%$ for blanquillo, $84.2{\sim}96.3%$ for sardine, $74.6{\sim}83.6%$ for mackerel. Application of supercritical carbon dioxide extraction offers an attractive alternative to the use of organic solvents for extraction of pesticide residues from fish tissues.

  • PDF

Effects of Modifiers on the Supercritical $CO_{2}$ Extraction of Glycyrrhizin from Licorice and the Morphology of Licorice Tissue after Extraction

  • Kim Hyun Seok;Lee Sang Yun;Kim Byung Yong;Lee Eun Kyu;Ryu Jong Hoon;Lim Gio Bin
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.6
    • /
    • pp.447-453
    • /
    • 2004
  • Optimal conditions for the supercritical carbon dioxide $(scCO_{2})$ extraction of glycyr­rhizin from licorice (Glycyrrhiza glabra) were investigated, with an emphasis on the types and levels of modifiers. The morphology of the licorice tissue remaining after the $scCO_{2} $ extraction of glycyrrhizin was examined by scanning electron microscopy, coupled with measurements of ab­solute density. Conventional organic solvent extraction was also carried out for purpose of quantitative comparison. At 50 MPa and $60^{circ}C$ glycyrrhizin could not be extracted with pure $scCO_{2}$, while a considerable amount of glycyrrhizin was extracted when water was added to $scCO_{2}$ as a modifier. The highest recovery was found to be about $97\%$ when $70\%$ aqueous methanol was added to $scCO_{2}$ at a concentration of $15\%$. The optimal pressure and temperature for the supercritical fluid extraction of glycyrrhizin were observed to be 30 M Pa and $60^{circ}C$, respectively. Under these conditions, the percentage recovery of glycyrrhizin attained a maximum value of 102.67\pm$ $1.13\%$ within 60 min. Furthermore, in the case of $scCO_{2}$ modified with $70\%$ aqueous methanol, the licorice tissue obtained after extraction was found to be severely de­graded by excessive swelling, and the absolute density of the licorice residues was observed to be the highest.

Experimental Study of An Indirect-Refrigeration System with Carbon Dioxide (이산화탄소를 이용한 간접 냉장시스템의 실험적 연구)

  • Kim, Yoonsup;Baik, Wonkeun;Yun, Rin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.5
    • /
    • pp.202-207
    • /
    • 2016
  • Experimental studies for an indirect R404A-$CO_2$ refrigeration system and a direct R404A refrigeration system were conducted. The configurations of the indirect R404A-$CO_2$ refrigeration system are a R404A refrigeration system as a top cycle and a circulating $CO_2$ system as a bottom cycle. The direct R404A system was modified from indirect R404A-$CO_2$ refrigeration system by removing circuit for $CO_2$ circulation. Various tests for both systems were conducted by changing load side brine temperature from 0 to 5 and $10^{\circ}C$ with cooling brine temperatures for R404A system at 15, 20, or $25^{\circ}C$. The indirect R404A-$CO_2$ refrigeration system showed the highest COP when load side brine temperature was at $10^{\circ}C$ in the evaporator and at cooling brine temperature of $15^{\circ}C$. The COP of 3.04 under that condition was the highest. This indirect R404A-$CO_2$ refrigeration system showed 9.02% higher COP than the direct R404A system that had increased pipeline length of 15 m, which simulated actual installation in a supermarket.

Design and Exergy Analysis for a Combined Cycle using LNG Cold/Hot Energy (액화천연가스 냉온열을 이용한 복합사이클의 설계 및 엑서지 해석)

  • Lee Geun Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.285-296
    • /
    • 2005
  • In order to reduce the compression power and to use the overall energy contained in LNG effectively, a combined cycle is devised and simulated. The combined cycle is composed of two cycles; one is an open cycle of liquid/solid carbon dioxide production cycle utilizing LNG cold energy in $CO_2$ condenser and the other is a closed cycle gas turbine which supplies power to the $CO_2$ cycle, utilizes LNG cold energy for lowering the compressor inlet temperature, and uses the heating value of LNG at the burner. The power consumed for the $CO_2$ cycle is investigated in terms of a production ratio of solid $CO_2$. The present study shows that much reduction in both $CO_2$ compression power (only $35\%$ of power used in conventional dry ice production cycle) and $CO_2$ condenser pressure could be achieved by utilizing LNG cold energy and that high cycle efficiency ($55.3\%$ at maximum power condition) in the gas turbine could be accomplished with the adoption of compressor inlet cooling and regenerator. Exergy analysis shows that irreversibility in the combined cycle increases linearly as a production ratio of solid $CO_2$ increases and most of the irreversibility occurs in the condenser and the heat exchanger for compressor inlet cooling. Hence, incoming LNG cold energy to the above components should be used more effectively.

An Experimental Study on the Carbonation Depth of Cement Paste Using Carbonation Reaction Accelerator (탄산화 반응 촉진제를 이용한 시멘트 페이스트의 탄산화 깊이에 관한 실험적 연구)

  • Seok-Man Jeong;Wan-Hee Yang;Dong-Cheol Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.349-354
    • /
    • 2023
  • This study wa s conducted a s pa rt of ma ximizing the use of ca rbon dioxide by a pplying CCU(Ca rbon Ca pture, Utiliza tion) a mong technologies for reducing CO2 in the cement industry. In a carbon dioxide curing environment, changes in carbonation depth and changes in basic physical properties by age due to the mixing of carbonation reaction accelerators were usually targeted at Portland cement paste. In addition, in order to check the fixed amount of CO2 in the concrete field, a thermal analysis method was applied to evaluate CaCO3 decarbonization at high temperatures. As a result of the evaluation, it was confirmed that the carbonation depth in the cured body significantly increased due to the incorporation of CRA in the carbonation depth diffusion performance. In addition, it was confirmed that the weight reduction rate increased by 23.8 % and 40.77 %, respectively, compared to Plain, in the order of curing conditions for constant temperature and humidity and curing conditions for carbonation chambers, so it was confirmed that the amount of excellent CaCO3 produced by the addition of CRA increased as the concentration of CO2 increased.

Prediction of Phase Behavior of ε-caprolactam Derivatives and Carbon Dioxide using a Group Contribution Method (그룹 기여 방법을 이용한 ε-caprolactam 유도체와 이산화탄소의 상거동 예측에 관한 연구)

  • Kwon, Soyoung;Bae, Won;Lee, Kyoungwon;Kim, Hwayong
    • Clean Technology
    • /
    • v.11 no.3
    • /
    • pp.117-122
    • /
    • 2005
  • N-vinyl caprolactam (NVCL), a kind of N-vinyl amide monomer, must be dissolved in continuous phase ($scCO_2$) for dispersion polymerization in supercritical carbon dioxide. Phase behavior of $CO_2$+NVCL is very important and necessary for determining initial polymerization condition and for monomer extraction from final polymer. There is the limitation of experimental method for obtaining pure properties of the monomer because of the possibility of polymerization. And N-methyl caprolactam (NMCL) is the useful solvent for the gas treating process. In the viewpoint of molecular thermodynamics, NVCL and NMCL have same functional group i.e. ${\varepsilon}$-caprolactam. In the case of NVCL, hydrogen of amide group is substituted with vinyl group and for NMCL, hydrogen of amide group is substituted with methyl group. We suggested modified group contribution method for this ${\varepsilon}$-caprolactam derivatives. This new group contribution parameter was applied to correlate $CO_2$ + N-vinyl caprolactam or N-methyl caprolactam system.

  • PDF

Influence of Relative humidity on the CO2 Diffusion Coefficient in Concrete (콘크리트 중의 이산화탄소 확산계수에 대한 상대습도 영향 연구)

  • Oh, Byung-Hwan;Jung, Sang-Hwa;Lee, Myung-Kun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.778-784
    • /
    • 2003
  • The carbonation of concrete is one of the major factors that cause durability problems in concrete structures. The rate of carbonation depends largely upon the diffusivity of carbon dioxide in concrete. The purpose of this study is to identify the diffusion coefficients of carbon dioxide for various concrete mixtures. To this end, several series of tests have been planned and conducted. The test results indicate that the diffusion of carbon dioxide reached the steady-state within about five hours after exposure. The diffusion coefficient increases with the increase of water-cement ratio and decreases with the increase of relative humidity at the same water-cement ratio. The content of aggregates also influences the diffusivity of carbon dioxide in concrete. It was found that the diffusion coefficient of cement paste is larger than that of concrete or mortar. The experimental study of carbon dioxide diffusivity in this study will allow more realistic assessment of carbonation depth in concrete structures.

Reservoir Modeling for Carbon Dioxide Sequestration and Enhanced Oil Recovery (이산화탄소 지중저장과 원유 회수증진 공정을 위한 저류층 모델링)

  • Kim, Seung-Hyok;Lee, Jong-Min;Yoon, En-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.35-41
    • /
    • 2012
  • Manifold researches for carbon capture and storage (CCS) have been developed and large scale-carbon capture system can be performed recently. Hence, the technologies for $CO_2$ sequestration or storage become necessary to handle the captured $CO_2$. Among them, enhanced oil recovery using $CO_2$ can be a solution since it guarantees both oil recovery and $CO_2$ sequestration. In this study, the miscible flow of oil and $CO_2$ in porous media is modeled to analyze the effect of enhanced oil recovery and $CO_2$ sequestration. Based on Darcy-Muskat law, the equation is modified to consider miscibility of oil and $CO_2$ and the change of viscosity. Finite volume method is used for numerical modeling. As results, the pressure and oil saturation changes with time can be predicted when oil, water, and $CO_2$ are injected, respectively, and $CO_2$ injection is more efficient than water injection for oil recovery.

The Program Development for Environmental Quality Level and Evaluation of Carbon Dioxide Emission in Construction Works (건설사업의 환경성 및 CO2 배출 평가 프로그램 개발)

  • Lee, Kyoung Hee;Kim, Hyo-Jin;Kwon, Suk-Hyun;Kim, Min-Ji
    • Land and Housing Review
    • /
    • v.3 no.4
    • /
    • pp.399-406
    • /
    • 2012
  • One-third of total energy and 50% of $CO_2$ emissions arise from construction phase. Because of this global amount of energy consumption and $CO_2$ emission, we must do our best to solve this problem. But our existing ways of meeting this problem has focused on the energy consumption saving of the construction and dwelling stage. On the other hand, we has been treated too lightly for handling the $CO_2$ emissions problem during the maintenance management and the demolition process so far,. In this paper, we quantitatively predicted and evaluated the environmental load in each construction step during all life cycle. And, we developed the environmental load assessment program for each construction step. And we proposed the reliable decision support model for objective and reliable environmental load assessment and reduction. This result must help the development of construction technology and low carbon & green growth.