• 제목/요약/키워드: Carbon dioxide (CO2)

검색결과 1,972건 처리시간 0.029초

이산화탄소 지중저장 모델링: 저투수 이질협재층이 이산화탄소 거동에 미치는 영향 (Modeling Geologic Storage of Carbon Dioxide: Effects of Low-permeability Layer on Migration of CO2)

  • 한아름;김태희;권이균;구민호
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권3호
    • /
    • pp.42-49
    • /
    • 2017
  • TOUGH2 was used to simulate the migration of $CO_2$ injected into a sandy aquifer. A series of numerical simulations was performed to investigate the effects of a low-permeability layer (LPL) embedded in the aquifer on the injection rate and the pressure distribution of $CO_2$. The results show that the size and location of the LPL greatly affected the spread of $CO_2$. The pressure difference between two points in the aquifer, one each below and above the LPL, increased as the size of the LPL increased, showing a critical value at 200 m, above which the size effect was diminished. The location of the LPL with respect to the injection well also affected the migration of $CO_2$. When the injection well was at the center of the LPL, the injection rate of $CO_2$ decreased by 5.0% compared to the case with no LPL. However, when the injection well was at the edge of the LPL, the injection rate was decreased by only 1.6%. The vertical distance between the injection point and the LPL also affected the injection rate. The closer the LPL was to the injection point, the lower the injection rate was, by up to 8.3%. Conclusively, in planning geologic storage of $CO_2$, the optimal location of the injection well should be determined considering the distribution of the LPL in the aquifer.

전자파 플라즈마 토치를 이용한 이산화탄소와 메탄의 Syngas 합성 (Conversion of $CO_2$ and $CH_4$ to Syngas by Making Use of Microwave Plasma Torch)

  • Dong Hun, Shin;Yong Cheol, Hong;Han Sup, Uhm
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2004년도 추계 학술발표회 논문집
    • /
    • pp.195-200
    • /
    • 2004
  • Carbon dioxide ($CO_2$) and methane (CH$_4$) are two major greenhouse Bases. $CO_2$is a stack gas of many industrial processes and the main product of the hydrocarbon combustion. There is recent research interest on the synthesis gas (syngas) formation from $CO_2$ and CH$_4$, via the following reaction: CH$_4$+$CO_2$longrightarrow 2H$_2$+$CO_2$, in order to reduce the greenhouse effects and to synthesize various chemicals, Preliminary experiments were conducted on the conversion of $CO_2$ and CH$_4$ to syngas by making use of a microwave plasma torch at atmospheric pressure. Conversion rates of $CO_2$and CH$_4$ to hydrogen (H$_2$), carbon monoxide (CO) and higher hydrocarbons were investigated using Gas Chromatography (GC) and Fourier Transform Infrared (FTIR). The experimental data indicate that the main products were H$_2$, CO and small amount of higher hydrocarbons, such as ethylene (C$_2$H$_4$).

  • PDF

부상분리 공정의 접촉영역 모델을 이용한 이산화탄소와 공기 기포의 충돌 및 입자 분리효율 비교 평가 (Comparative Evaluation on Collision and Particle Separation Efficiency between CO2 Bubbles and Air Bubbles Using Contact Zone Model of Flotation Process)

  • 양종원;최용호;채인석;김미숙;정용훈;김태금;곽동희
    • 한국물환경학회지
    • /
    • 제35권1호
    • /
    • pp.64-71
    • /
    • 2019
  • In recent years, carbon dioxide ($CO_2$) bubbles emerged as the most widely applied material with the recycling of sequestrated storage to decrease global warming. Flotation using $CO_2$ as an alternative to air could be effective in overcoming the high power consumption in the dissolved air flotation (DAF) process. The comparison of DAF and DCF system indicated that, the carbon dioxide flotation (DCF) system with pressurized $CO_2$ only requires 1.5 ~ 2.0 atm, while the DAF system requires 3.0 ~ 6.0 atm. In a bid to understand the characteristics of particle separation, the single collector collision (SCC) model was used and a series of simulations were conducted to compare the differences of collision and flotation between $CO_2$ bubbles and air bubbles. In addition, laboratory experiments were sequentially done to verify the simulation results of the SCC model. Based on the simulation results, surfactant injection, which is known to decrease bubble size, cloud improved the collision efficiency of $CO_2$ bubbles similar to that of air bubbles. Furthermore, the results of the flotation experiments showed similar results with the simulation of the SCC model under anionic surfactant injection. The findings led us to conclude that $CO_2$ bubbles can be an alternative to air bubbles and a promising material as a collector to separate particles in the water and wastewater.

CCS (Carbon Capture & Sequestration) 기술·경제성 평가 분석 (Development of Techno-Economic Evaluation Model for CCS (Carbon Capture & Sequestration))

  • 이지현;곽노상;이동욱;심재구;이정현
    • 한국기후변화학회지
    • /
    • 제7권2호
    • /
    • pp.111-120
    • /
    • 2016
  • In this study, Techno-economic evaluation model for carbon capture & sequestration (CCS) technologies are reviewed. Based on a key parameters of Korea's electricity market, performance data of 10 MW-scale post-combustion $CO_2$ capture pilot plant in Boryong station, the cost of $CO_2$ avoided was evaluated followed by international guideline suggested by IEA CCS costing methods task force. The result showed that Korea's Electricity cost including CAPEX & OPEX of reference power plant is relatively low compared to OECD nations which lead to a lower CCS cost ($33USD\;t/CO_2$). And future work using newly evaluated CAPEX & OPEX data of power plant with/without CCS is recommended.

내경 4.57과 7.75 mm인 수평관내 이산화탄소의 증발 압력강하 (Evaporation Pressure Drop of Carbon Dioxide in Horizontal Tubes with Inner Diameter of 4.57 mm and 7.75 mm)

  • 손창효
    • 한국자동차공학회논문집
    • /
    • 제16권3호
    • /
    • pp.30-37
    • /
    • 2008
  • The evaporation pressure drop of $CO_2$ (R-744) in horizontal tubes was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator (test section). The test section consists of a smooth, horizontal stainless steel tube of 7.75 and 4.57 mm inner diameter. The experiments were conducted at saturation temperature of $-5^{\circ}C\;to\;5^{\circ}C$, and heat flux of 10 to $40kW/m^2$. The test results showed the evaporation pressure drop of $CO_2$ are highly dependent on the vapor quality, heat flux and saturation temperature. The pressure drop measured during the evaporation process of $CO_2$ increases with increased mass flux, and decreases as the saturation temperature increased. The evaporation pressure drop of $CO_2$ is very lower than that of R-22. In comparison with test results and existing correlations, the best fit of the present experimental data is obtained with the correlation of Choi et al. But existing correlations failed to predict the evaporation pressure drop of $CO_2$. Therefore, it is necessary to develop reliable and accurate predictions determining the evaporation pressure drop of $CO_2$ in a horizontal tube.

$CO_{2}$이용 열펌프의 실외열교환기 성능에 관한 실험적 연구 (An Experimental Study on the Performance of Outdoor Heat Exchanger for Heat Pump Using $CO_{2}$)

  • 장영수;이민규;안영산;김영일
    • 설비공학논문집
    • /
    • 제17권2호
    • /
    • pp.101-109
    • /
    • 2005
  • The purpose of this study is to investigate the performance of outdoor heat exchanger for heat pump using carbon dioxide. Two types of fin and tube heat exchangers (2 rows for type A and 3 rows for B) are tested. Both heat exchangers have counter-cross flow and 1-circuit arrangement. Test results such as heat transfer rate, pressure drop characteristics and temperature distribution in the heat exchanger are shown with respect to mass flow rate of refrigerant and frontal air velocity For cooling mode, the minimum temperature difference between air and refrigerant of type B is smaller than that of type A by $1^{circ}C$, but the pressure loss of air side is much higher for type B by $29\%$. It is found that a large temperature gradient of carbon dioxide during gas cooling Process Promotes thermal conduction through tube wall and fins which results in degradation of heat transfer performance. For heating mode operation, type B heat exchanger shows higher heat transfer performance compared to type A. However, because pressure loss of refrigerant side of type B is much greater than that of type A, the refrigerant outlet pressure of type B becomes lower than that of type A.

석유 코크스의 에너지 전환 : CO2 가스화 (Energy conversion of petroleum coke : CO2 gasification)

  • 국진우;곽인섭;이시훈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.255-257
    • /
    • 2014
  • The installation of light oil facilities or delayed cokers seems to be inevitable in the oil refinery industry due to the heavy crude oil reserves and the increased use of light fuels as petroleum products. Petroleum coke is a byproduct of oil refineries and it has higher fixed carbon content, higher calorific value, and lower ash content than coal. However, its sulfur content and heavy metal content are higher than coal. In spite of disadvantages, petroleum coke might be one of promising resources due to gasification processes. The gasification of petroleum coke can improve economic value of oil refinery industries by handling cheap, toxic wastes in an environment-friendly way. In this study, $CO_2$ gasification reaction kinetics of petroleum coke, various coals and mixing coal with petroleum coke have investigated and been compared by using TGA. The kinetics of $CO_2$ gasification has been performed with petroleum coke, 3 kinds of bituminous coal [BENGALLA, White Haven, TALDINSKY], and 3 kinds of sub-bituminous coal [KPU, LG, MSJ] at various temperature[$1100-1400^{\circ}C$].

  • PDF

밀폐된 공간에서 환기에 의한 ETS 성분 제거

  • 황건중;이문수;나도영
    • 한국연초학회지
    • /
    • 제21권1호
    • /
    • pp.102-108
    • /
    • 1999
  • This study was conducted to evaluate the ventilation to remove gases, vapor and particles of environmental tobacco smoke(ETS) in a closed room. The ventilation rate choosed were 0.445 ㎥/min, 0.528 ㎥/min, and 0.625 ㎥/min. ETS components measured were total suspended particle(TSP), ultraviolet particulate matter(UVPM), fluorescent particulate matter(FPM), solanesol, carbon dioxide($CO_2$), carbon monoxide(CO), nicotine, and 3-ethenylpyri-dine(3-EP). The concentration of ETS components measured rapidly decreased as increasing ventilation rate, but the removal efficiency by ventilation was different from each ETS compounds. The $CO_2$, and CO, gaseous components of ETS, were dominant components to be removed from the room by ventilation. The ventilation with 0.528 ㎥/min for 1 hr was enough to remove over 99% of those gaseous components. Nicotine and 3-EP needed the ventilation for 2 hrs to reduce over 95 % of those components. As the same ventilation rate, 99 % of TSP and solanesol concentration were removed from the room within 2 hrs, UVPM and FPM concentration decreased 90 %.

  • PDF

초임계 이산화탄소에서의 유기인 일리드와 카르보닐 화합물의 반응 (Reaction of Phosphorus Ylides with Carbonyl Compounds in Supercritical Carbon Dioxide)

  • 정경일;김학도;심재진;나춘섭
    • 대한화학회지
    • /
    • 제48권1호
    • /
    • pp.28-32
    • /
    • 2004
  • 초임계 이산화탄소 용매에서의 (벤질렌)삼페닐 인 일리드 화합물의 카르보닐 화합물과의 Wittig 반응을 연구하였다. 소량의 조용매 (THF, 5%)를 첨가한 이산화탄소 (24 mL 용기)에 녹인 (벤질렌)삼페닐 인 일리드 (약 1 mmol)를 여러 방향족 알데히드와 초임계 조건(80 $^{\circ}C$, 2,000 psi) 에서 2시간 반응시켜 올레핀 화합물을 좋은 수율로 얻을 수 있었다. 새로운 조건에서의 반응은 기존 용매 (THF)에서의 반응보다는 약간 느리게 나타났으나 생성물의 (E)- 와 (Z)-이성체 비율에 차이가 있었다. 두 이성체가 함께 생성되는 반응의 경우 (Z)-이성체의 비율이 증가하였다. 반면 t-butylcyclohexanone과 같은 케톤과의 반응은 두 조건에서 모두 낮은 전환을 보였다. 이 연구를 통하여 이산화탄소에서의 Wittig 반응이 초임계 조건에서 좋은 수율로 이루어지며 이 새로운 용매의 사용으로 반응선택성의 변화가 가능할 수 있다는 초기 결과를 얻었다. 이 결과는 Wittig 반응과 같은 유용한 유기반응을 친환경 용매 (이산화탄소)에서 수행할 수 있도록 전환하는데 좋은 자료가 될 수 있다고 본다.

망간산화물의 합성과 수소환원에 의한 활성화 (Synthesis of Spinel Phase Manganese Oxide and Its Activation by Hydrogen Reduction)

  • 양천모;김순태;임병오
    • 한국응용과학기술학회지
    • /
    • 제17권1호
    • /
    • pp.49-53
    • /
    • 2000
  • For decompose carbon dioxide, manganese oxide was synthesized with $0.25M-MnSO_{4}{\cdot}nH_{2}O$ and 0.5M-NaOH by coprecipitation. We made magnetite deoxidized manganese oxide by hydrogen reduction for 1hour at $330^{\circ}C$. We investigated characteristics of catalyst, hydrogen reduction degree and decomposition rate of carbon dioxide. The structure of the hausmannite certified spinel type. The specific surface area of synthesized hausmannite and deoxidized hausmannite were $22.36m^{2}/g$, $33.56m^{2}/g$ respectively. The decomposition rate of $CO_{2}$ of deoxidized hausmannite was 57%.