• Title/Summary/Keyword: Carbon dioxide (CO2)

Search Result 1,972, Processing Time 0.027 seconds

Approach to Reduce CO2 by Renewable Fuel Cofiring for a Pulverized Coal Fired Boiler (신재생연료 혼소를 통한 미분탄 화력 발전소의 CO2 저감 방안 도출)

  • Kim, Taehyun;Choi, Sangmin;Yang, Won
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.19-20
    • /
    • 2013
  • The cofiring of renewable fuel in coal fired boilers is an attractive option to mitigate $CO_2$ emissions, since it is relatively low cost option for efficiently converting renewable fuel to electricity by adding biomass as partial substitute of coal. However, it would lead to reduce plant efficiency and flexibility in operation, and increase operation cost and capital cost associated with renewable fuels handling and firing equipment. The aim of this study is to investigate reduction of carbon dioxide at varying percentage of biomass in fuel blend to the boiler biomass, and estimate operation and capital cost. Wood pellet, PKS (palm kernel shell), EFB (empty fruit bunch) and sludge are considered as a renewable fuels for a cofiring with coal. Several approaches by the cofiring ratio are chosen from past plant demonstrations and commercial cofiring operation, and they are evaluated and discussed for CO2 reduction and cost estimation.

  • PDF

The Operational Characteristics of CO2 5 ton/day Absorptive Separation Pilot Plant (이산화탄소 5 ton/day 흡수분리 Pilot Plant 운전 특성)

  • O, Min-Gyu;Park, So-Jin;Han, Keun-Hee;Lee, Jong-Seop;Min, Byoung-Moo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.128-134
    • /
    • 2012
  • The pilot scale experiments can handle the flue gas up to 1,000 $Nm^3/hr$ for separation of carbon dioxide included in real flue gas at coal-fired power plant. The operational characteristics was analyzed with the main experimental variables such as flue gas flow rate, absorbent circulation rate using chemical absorbents mono-ethanolamine( MEA) and 2-amino-2-methyl-1-propanol(AMP). The more flue gas flow rate decreased in 100 $m^3/hr$ in the MEA 20 wt% experiments, the more carbon dioxide removal efficiency was increased 6.7% on average. Carbon dioxide removal efficiency was increased approximately 2.8% according to raise of the 1,000 kg/hr absorbent circulation rate. It also was more than 90% at $110^{\circ}C$ of re-boiler temperature. Carbon dioxide removal efficiency of the MEA was higher than that of the AMP. In the MEA(20 wt%) experiment, carbon dioxide removal efficiency(85.5%) was 10% higher than result(75.5%) of ASPEN plus simulation.

Adsorption of Carbon Dioxide using Pelletized AC with Amine impregnation (아민 함침 입자상 활성탄의 특성 분석 및 이산화탄소 흡착능 평가연구)

  • Lim, Yun-Hui;Jo, Young-Min;Kim, Seung-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.88-95
    • /
    • 2013
  • This study attempts to capture the low level carbon dioxide from indoor spaces using a granular activated carbon (WSC-470) which was modified with primary monoethanolamine. Adsorption capacity of the prepared adsorbents was evaluated for pure $CO_2$ flow and 3000 ppm as a function of MEA concentration and solvents such as distilled water, ethanol and methanol. The AC based adsorbents then were characterized in terms of pore structure by BET and chemical functionalities by XPS. While high concentration of MEA reduced specific surface area, porosity and micro pores, nitrogen content which can enhance the surface basicity was increased. The maximum adsorption capacity decreased comparing to the initial AC pellets, whilst the potential of selective adsorption amount at low level $CO_2$ was increased at 45% (0.73 mmol/g).

Photoelectrochemical Water Oxidation and $CO_2$ Conversion for Artificial Photosynthesis

  • Park, Hyunwoong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.70-70
    • /
    • 2013
  • As the costs of carbon-footprinetd fuels grow continuously and simultaneously atmospheric carbon dioxide concentration increases, solar fuels are receiving growing attention as alternative clean energy carriers. These fuels include molecular hydrogen and hydrogen peroxide produced from water, and hydrocarbons converted from carbon dioxide. For high efficiency solar fuel production, not only light absorbers (oxide semiconductors, Si, inorganic complexes, etc) should absorb most sunlight, but also charge separation and interfacial charge transfers need to occur efficiently. With this in mind, this talk will introduce the fundamentals of solar fuel production and artificial photosynthesis, and then discuss in detail on photoelectrochemical (PEC) water splitting and CO2 conversion. This talk largely divides into two section: PEC water oxidation and PEC CO2 reduction. The former is very important for proton-coupled electron transfer to CO2. For this oxidation, a variety of oxide semiconductors have been tested including TiO2, ZnO, WO3, BiVO4, and Fe2O3. Although they are essentially capable of oxidizing water into molecular oxygen, the efficiency is very low primarily because of high overpotentials and slow kinetics. This challenge has been overcome by coupling with oxygen evolving catalysts (OECs) and/or doping donor elements. In the latter, surface-modified p-Si electrodes are fabricated to absorb visible light and catalyze the CO2 reduction. For modification, metal nanoparticles are electrodeposited on the p-Si and their PEC performance is compared.

  • PDF

Prediction of Adiabatic Capillary Tube Length of Heat Pump Using Carbon Dioxide (CO2 히트펌프용 단열 모세관 길이 예측에 관한 연구)

  • Oh, Hoo-Kyu;Choi, Kwang-Hwan;Jeon, Min-Ju;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.576-581
    • /
    • 2011
  • In this paper, the prediction of adiabatic capillary tube of heat pump using carbon dioxide is investigated theoretically and experimentally to offer the basic design data for the operating parameters of this system. The operating parameters considered in this study include evaporation temperature, cooling pressure of gas cooler, mass flowrate, and the length and diameter of capillary tube. Based on study results of several researchers, the correlation predicting the length of capillary tube of $CO_2$ heat pump was proposed. And the experimental results of evaporation temperature, mass flowrate and cooling pressure in adiabatic capillary tube have an good agreement to those calculated from Eq. (3) within 0.63~10.9%. Therefore, the prediction calculating the length of adiabatic capillary tube of $CO_2$ heat pump was proposed at the given conditions such as cooling pressure, evaporation temperature and capillary tube diameter.

Evaluating Cross-correlation of GOSAT CO2 Concentration with MODIS NDVI Patterns in North-East Asia (동북아시아에서 GOSAT CO2와 MODIS 식생지수 분포의 상관성 분석)

  • Choi, Jin Ho;Joo, Seung Min;Um, Jung Sup
    • Spatial Information Research
    • /
    • v.21 no.5
    • /
    • pp.15-22
    • /
    • 2013
  • The purpose of this work is to investigate correlation between $CO_2$ concentration and NDVI (Normalized Difference Vegetation Index) in North East Asia. Geographically weighted regression techniques were used to evaluate the spatial relationships between GOSAT (Greenhouse Observing SATellite) $CO_2$ measurement and MODIS (Moderate Resolution Imaging Spectroradiometer) vegetation index. The results reveals that $CO_2$ concentration to be negatively associated with NDVI. The analysis of Global Morans' I index and Anselin Local Morasn's I showed spatial autocorrelation between the overall spatial pattern of $CO_2$ and NDVI. Ultimately, there were clustered patterns in both data sets. The results show that carbon dioxide concentration shows non-random distribution patterns in relation to NDVI clusters, which proves that intense development activities such as deforestation are influencing carbon dioxide emission across the area of analysis. However, as the concentration of carbon dioxide varies depending on a variety of factors such as artificial sources, plant respiration, and the absorption and discharge of the ocean, follow-up studies are required to evaluate the correlations among more related variables.

Carbon Dioxide Adsorption Study of Biochar Produced from Shiitake Mushroom Farm by-product Waste Medium (표고버섯 농가 부산물 폐배지 기반 바이오차의 이산화탄소 흡착 연구)

  • Gyuseob Song;Jinseung Kim;Juhyoung Park;Younghoon Noh;Youngchan Choi;Youngjoo Lee;Kyubock Lee
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.135-144
    • /
    • 2024
  • The present study investigated waste medium from a domestic shiitake mushroom farm, which was pyrolyzed to produce biochar. The yield rate of the biochar was compared after exposure to various pyrolysis temperature conditions, and the characteristics of the produced biochar were analyzed. The present study focused on the carbon dioxide (CO2) adsorption capacity of the resulting biochar. The CO2 adsorption capacity exhibited a correlation with the pyrolysis temperature of the biochar, with increasing temperatures resulting in higher CO2 adsorption capacities. Brunauer-Emmett-Teller (BET) analysis showed that the CO2 adsorption capacity was related to the surface area and pore volume of the biochar. Calcium is added to the process of producing mushroom medium. Experiments were performed to investigate the CO2 adsorption capacity of the biochar from the waste medium with the addition of calcium. In addition, CO2 adsorption experiments were conducted after the pyrolysis of kenaf biochar with the addition of calcium. The results of these experiments show that calcium affected the CO2 adsorption capacity.

Carbon Dioxide-Isopropyl Alcohol System: High Pressure Phase Behavior and Application with SAFT Equation of State (이산화탄소-이소프로필 알코올계: 고압 상거동 및 SAFT 상태방정식 적용)

  • Kwak, Chul;Byun, Hun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.324-329
    • /
    • 1999
  • In this work, high pressure binary phase equilibria data of carbon dioxide and isopropyl alcohol were obtained by experiment. A static type experimental apparatus was made to measure temperature, pressure and phase equilibria composition. The experimental apparatus was tested by comparing the measured phase equilibria data of the carbon dioxide-isopropyl alcohol system at $80^{\circ}C$ with those of Rodosz. The binary phase behavior data of carbon dioxide-isopropyl alcohol system were measured in range of 41 to 133 bar and at temperatures of 40, 60, 80, 100 and $120^{\circ}C$. The solubility of isopropyl alcohol increases as the temperatures increases at constant pressure. Also, these carbon dioxide-alcohol solute system have critical-mixture curves that exhibit maxima in pressure at temperatures between the critical temperatures of carbon dioxide and isopropyl alcohol. The experimental data obtained in this study were modeled using the statistical associating fluid theory(SAFT) equation of state. A good fit of the data was obtained with SAFT using two adjustable parameters for the carbon dioxide-isopropyl alcohol system.

  • PDF

A Model for Carbon Dioxide Exchanges of Pinus densiflora Population (소나무 개체군의 이산화탄소 교환 모델)

  • Suh, kyeHong
    • The Korean Journal of Ecology
    • /
    • v.19 no.1
    • /
    • pp.9-19
    • /
    • 1996
  • The model PINUSCO2 hased of physiology was creted to simulate carbon dioxide budget in a population of red pine(pinus densiflora) which is one of the dominant species in Korea. Driving forces of PINUSCO2 are global radiation, maximum and minimum air temperatures. State variables fo the model are standing crops of leaf, branch, trunk and root of the red pine population. PINUSCO2 calculates net photosynthesis of canopy and respiration of each organ with 1 hour time step. PINUSCO2 estimated the annual gross productivity, respiration and net productivity of the red pine population as 43.99, 24.55, and 19.44 ton CO2·ha-1·yr-1, respectively, at the study sity(35°58′00"N, 128°25′35"E). PINUSCO2 showed that the red pine population grew mainly in spring and fall, and that in summer daily net population productivity frequently became negative.

  • PDF

Method for Preventing Asphyxiation Accidents by a CO2 Extinguishing System on a Ship (선박 내 CO2 소화설비에 의한 질식사고 방지 기법)

  • Ha, Yeon-Chul;Seo, Jung-Kwan;Hwang, Jun-Ho;Im, Kichang;Ryu, Sang-Hoon
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.57-64
    • /
    • 2015
  • Carbon dioxide extinguishing systems are broadly used for onshore and offshore fire accidents because of excellent performance and low cost. However, there is risk with carbon dioxide systems, which have caused many injuries and deaths by suffocation associated with industrial and marine fire protection applications. In this study, a numerical analysis was performed to predict the fire suppression characteristics of a carbon dioxide system in the compressor room of ships. A double protection safety system is suggested to prevent suffocation accidents from carbon dioxide extinguishing systems. Four scenarios were selected to study the variation of the heat release rate, maximum temperature, a $CO_2$ and $O_2$ mole fraction, and fire suppression characteristics with the carbon dioxide system. The importance of proper design is suggested for a ventilation system in the compressor room of ships.