• Title/Summary/Keyword: Carbon dioxide (CO2)

Search Result 1,972, Processing Time 0.033 seconds

Field Applicability of Scale Prevention Technologies for Drainage Holes (배수공 내 스케일 생성 방지 기술의 현장 적용성 평가)

  • Chu, Ickchan;Lee, Jonghwi;Kim, Hyungi;Kim, Kyungmin;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.45-51
    • /
    • 2012
  • The calcium hydroxide$(Ca(OH)_2)$ which is the cement hydrate flowed into the tunnel by groundwater is reacted with microorganism in the soil, carbon dioxide$(CO_2)$ and the vehicle's exhaust gas$(SO_3)$. So its by-products are precipitated at the drainage pipe and these cause the drainage clogging. By this phenomenon, Degradation of water flow at the drainage system of the tunnel occurred and also pore water pressure is increased. Hence the acceleration of seepage and degradation of lining is occurred. The purpose of this study is to evaluate the field applicability of the Quantum Stick and Magnetic treatment in prevention of scale deposits at the Namsan ${\bigcirc}{\bigcirc}$ tunnel and the Zone ${\bigcirc}{\bigcirc}{\bigcirc}$ of subway. These technologies were installed into drainpipes with their performance monitored through occasional site visits. SEM and XRD were also performed on scale collected from these drainpipes. As a result, in case which factor technology is applied, scale creation is remarkably decreased and especially Quantum Stick treatment performing better than Magnetic treatment. Therefore, additional application of Quantum Stick or Magnetic treatment to the existing drainage is expected to decrease the drainage clogging of the drainage.

Effects of Cudrania Tricuspidata Root Extract (CTE) on Ethanol-Induced Hangover via Modulating Alcohol Metabolizing Enzyme Activities and Blood Gas Levels in Rats (꾸지뽕나무 뿌리 추출물의 알코올 대사 효소 활성 및 혈액 산성화 기전 조절을 통한 숙취해소 효과)

  • Choi, Na-Eun;Ro, Ju-Ye;Lee, Ju-Yeong;Ryu, Jin-Hyeob;Cho, Hyun-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.218-225
    • /
    • 2017
  • To investigate the anti-hangover effects of Cudrania tricuspidata root extract (CTE), the blood alcohol metabolism and blood gas imbalance of CTE in rats treated with 10 ml/kg alcohol were examined. CTE (500 mg/kg and 750 mg/kg) was administrated after 30 minutes of alcohol consumption (10 ml/kg). Blood collection was implemented from the tails of the animals after 1, 3, and 5 hours post alcohol consumption. The Condition drink (a commercial anti-hangover beverage) was used as a positive control. Single administration by the oral route was performed. The consumption of CTE (500 mg/kg and 750 mg/kg) decreased the serum alcohol concentration by increasing and maintaining both the alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) enzyme activity levels in the blood and liver. In addition, CTE led to recovery from the imbalances in the blood gas levels, including carbon dioxide ($CO_2$) and changes in pH, bicarbonate ($HCO_3{^-}$) and lactic acid levels due to alcohol ingestion. In conclusion, CTE exerted a more pronounced anti-hangover effect than a commercial anti-hangover drink. Therefore, CTE can be a novel and safe anti-hangover natural product agent for the prevention or treatment of symptoms caused by excessive alcohol consumption.

Design and Optimization of a Biomass Production System Combined with Wind Power Generation and LED on Marine Environment (LED가 결합된 야간풍력발전 활용을 포함한 해상환경 바이오매스 생산시스템의 최적 설계)

  • Hong, Gi Hoon;Cho, Sunghyun;Kang, Hoon;Park, Jeongpil;Kim, Tae-Ok;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.74-82
    • /
    • 2015
  • Carbon dioxide was designated as one of greenhouse gases that cause global warming. Among various ways to solve the $CO_2$ emission issue, the 3rd-generation biomass (algae) production is considered as a viable method to reduce $CO_2$ in the atmosphere. In this research, we propose a design of an innovative sustainable production system by utilizing the 3rd generation biomass in the environment of floating production storage and offloading (FPSO). Existing biomass production systems depend on the solar energy and they cannot continue producing biomass at night. Electricity produced from offshore wind farms also need an efficient way to store the energy through energy storage system (ESS) or deliver it real-time through power grid, both requiring heavy investment of capital. Thus, we design an offshore grid structure harnessing LED lights to supply the necessary light energy, by using the electricity produced from the wind farm, resulting in the maximized production of biomass and efficient use of wind farm energy. The final design integrates the biomass production system enhanced by LED lights with a wind power generation. The suggested NLP model for the optimal design, implemented in GAMS, would be useful for designing improved offshore biomass production systems combined with the wind farm.

Anthracite Oxygen Combustion Simulation in 0.1MWth Circulating Fluidized Bed (0.1 MWth 급 순환유동층에서의 무연탄 연소 전산유체역학 모사)

  • Go, Eun Sol;Kook, Jin Woo;Seo, Kwang Won;Seo, Su Been;Kim, Hyung Woo;Kang, Seo Yeong;Lee, See Hoon
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.417-428
    • /
    • 2021
  • The combustion characteristics of anthracite, which follow a complex process with low reactivity, must be considered through the dynamic behavior of circulating fluidized bed (CFB) boilers. In this study, computational fluid dynamics (CFD) simulation was performed to analyze the combustion characteristics of anthracite in a pilot scale 0.1 MWth Oxy-fuel circulating fluidized bed (Oxy-CFB) boiler. The 0.1MWth Oxy-CFB boiler is composed of combustor (0.15 m l.D., 10 m High), cyclone, return leg, and so on. To perform CFD analysis, a 3D simulation model reactor was designed and used. The anthracite used in the experiment has an average particle size of 1,070 ㎛ and a density of 2,326 kg/m3. The flow pattern of gas-solids inside the reactor according to the change of combustion environment from air combustion to oxygen combustion was investigated. At this time, it was found that the temperature distribution in air combustion and oxygen combustion showed a similar pattern, but the pressure distribution was lower in oxygen combustion. addition, since it has a higher CO2 concentration in oxygen combustion than in air combustion, it can be expected that carbon dioxide capture will take place actively. As a result, it was confirmed that this study can contribute to the optimized design and operation of a circulating fluidized bed reactor using anthracite.

Effective Suppression of Methane Production by Chelating Nickel of Methanogenesis Cofactor in Flooded Soil Conditions (담수토양에서 메탄생성반응 보효소 니켈의 킬레이팅에 의한 메탄 생산량의 효과적 저감)

  • Kim, Tae Jin;Hwang, Hyun Young;Hong, Chang Oh;Lee, Jeung Joo;Kim, Gun Yeob;Kim, Pil Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.282-289
    • /
    • 2014
  • BACKGROUND: Methane($CH_4$) is considered as the secondmost potent greenhouse gas after carbon dioxide ($CO_2$). Methanogenesis is an enzyme-mediated multi-step process by methanogens. In the penultimate step, methylated Co-M is reduced by methyl Co-M reductase (MCR) to $CH_4$ involving a nickel-containing cofactor F430. The activity of MCR enzyme is dependent on the F430 and therefore, the bioavailability of Ni to methanogens is expected to influence MCR activity and $CH_4$ production in soil. In this study, different doses of EDTA(Ethylene Diamine Tetraacetic Acid) were applied in flooded soils to evaluate their suppression effect on methane production by chelating Ni of methanogenesis cofactor. METHODS AND RESULTS: EDTA was selected as chelating agents and added into wetland and rice paddy soil at the rates of 0, 25, 50, 75, and $100mmol\;kg^{-1}$ before 4-weeks incubation test. During the incubation, cumulative $CH_4$ production patterns were characterized. At the end of the experiment, soil samples were removed from their jars to analyze total soil Ni and water-soluble Ni content and methanogen abundance. Methane production from 100 mmol application decreased by 55 and 78% in both soils compared to that from 0 mmol. With increasing application rate of EDTA in both soils, water-soluble Ni concentration significantly increased, but total soil Ni and methanogen activities showed negative relationship during incubation test. CONCLUSION: The decrease in methane production with EDTA application was caused by chelating Ni of coenzyme F430 and inhibiting methanogenesis by methyl coenzyme M reductase. Consequently, EDTA application decreased uptake of Ni into methanogen, subsequently inhibited methanogen activities and reduced methane production in flooded soils.

Investigation of Early-Age Concrete Strength Development Using Hardening Accelerator (경화촉진제를 사용한 콘크리트의 초기강도 발현 특성 검토)

  • Kim, Gyu-Yong;Kim, Yong-Ro;Park, Jong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.309-316
    • /
    • 2016
  • In this study, performance of hardening accelerator types which promote setting and hardening of cement has been reviewed in order to develop early age strength of concrete with compressive strength of 21~27 MPa after examination of strength development of the concrete at early age according to curing temperature and unit cement(binder) content. As results, soluble mineral salt showed better hardening acceleration effect than organic salt in the scope of this study. Also, hydration reaction accelerating effect of $C_3S$ by Soluble mineral salt is effective on development of early age compressive strength and it was shown that the Pt's hydration reaction accelerating effect was the best. Construction duration reduction can be expected by securing compressive strength for prevention of early aged freezing damage in 25hour-curing time under curing temperature at $15^{\circ}C$. Also, it was shown that compressive strength of specimen cured at $5^{\circ}C$ was similar with plain specimen cured at $10^{\circ}C$. Therefore, it is expected that fuel costs and carbon dioxide can be reduced when the same construction duration is considered.

The effect of using laser for ceramic bracket bonding of porcelain surfaces (세라믹 브라켓 부착 시 레이저를 이용한 포세린 표면처리 효과)

  • An, Kyung-Mi;Sohn, Dong-Seok
    • The korean journal of orthodontics
    • /
    • v.38 no.4
    • /
    • pp.275-282
    • /
    • 2008
  • Objective: The purpose of this study was to investigate the effect of using laser for ceramic bracket bonding of porcelain surfaces and to compare it with conventional treatment of porcelain surfaces. Methods: Ninety feldspathic porcelain specimens were divided into 9 groups of 10, with each group having different surface treatments performed. Surface treatment groups were orthophosphoric acid, orthophosphoric acid with silane, hydrofluoric acid, hydrofluoric acid with silane, sandblasted, sandblasted with silane, laser etched, laser etched with silane, and glazed surface served as a control group. In the laser etched groups, the specimens were irradiated with 2-watt superpulse carbon dioxide ($CO_2$) laser for 20 seconds. Ceramic brackets were bonded with light-cure composite resin and all specimens were stored in water at $37^{\circ}C$ for 24 hours. Shear bond strength was determined in megapascals (MPa) by shear test at 1 mm/minute crosshead speed and the failure pattern was assessed. For statistical analysis, one-way ANOVA and tukey test were used. Results: Statistical analysis showed significant differences between the groups. The HFA + S group showed the highest mean shear bond strength ($13.92{\pm}1.94\;MPa$). This was followed by SB + S ($10.16\;{\pm}\;1.27\;MPa$), HFA ($10.09\;{\pm}\;1.07\;MPa$), L + S ($8.25\;{\pm}\;1.24\;MPa$), L ($7.86\;{\pm}\;0.96\;MPa$), OFA + S ($7.22\;{\pm}\;1.09\;MPa$), SB ($3.41\;{\pm}\;0.37\;MPa$), OFA ($2.81\;{\pm}\;0.37\;MPa$), G ($2.46\;{\pm}\;1.36\;MPa$), Bond failure patterns of HFA and silane groups, except L + S, were cohesive modes in porcelain while adhesive failure was observed in the control group and the rest of the groups. Conclusions : A 2-watt superpulse $CO_2$ laser etching of porcelain surfaces can provide a satisfactory result for porcelain surface treatment for ceramic bracket bonding. Laser irradiation may be an alternative conditioning method for the treatment of porcelain surfaces.

Short-term Variability of Carbon Dioxide within and across the Korean Peninsula: Case Study during 1995-1997 (이산화탄소의 단주기적 농도변화 특성)

  • Song, Ki-Bum;Youn, Yong-Hoon;Kim, Ki-Hyun
    • Journal of the Korean earth science society
    • /
    • v.21 no.5
    • /
    • pp.623-634
    • /
    • 2000
  • This study was conducted to analyze the patterns associated with the short-term variability of CO$_2$ concentrations over 24-h scale within and across the Korean Peninsula. In the course of our study, we compared the data sets obtained from Moo-Ahn (MAN) station located in the far western coastal area of Korea with those determined from major background observatory stations around the world from the periods of Aug. 1995 to Dec. 1997. The mean CO$_2$ concentration of the MAN area for the whole study periods, when computed using the daily mean values, was found out to be 374.5${\pm}$6.6 ppm (N=884); seasonal mean values were found out to be 378${\pm}$5.2 (spring: N=181), 372${\pm}$10.2 (summer: N =210), 372${\pm}$7.2 (fall: N=243), and 376${\pm}$5.4 ppm (winter: N=206). When the data from MAN was compared with those of major background stations, the effects of both daily and seasonal components appear to vary distinctively across different stations. Those effects are expected to reflect the mixed effects of various factors which include: seasonal pollution patterns, weather conditions, vegetation, and so forth. Based upon this comparative analysis, we suspect that the MAN area is under the strong influence of anthropogenic source processes relative to all the other stations under consideration. If that is not the case, the existence of enhanced CO$_2$ level may be rather ubiquitous phenomena in Korea. More detailed inspection of CO$_2$ behavior from various respects is strongly desired in the future.

  • PDF

Assessment of Conscious Coginition Degree and Survey on the Indoor Air Quality at a public School in Seoul (서울시 일부 학교의 실내 공기질 조사 및 인식도 평가)

  • Sohn, Jong-Ryeul;Byeon, Sang-Hoon;Kim, Young-Whan;Kim, Jong-Hyeok;Cho, Yun-Su;Lee, Jae-Young;Park, Youn-Ju
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.3 s.49
    • /
    • pp.100-109
    • /
    • 2003
  • Recently, Indoor air quality(IAQ) in workplace, residential environments and schools has been concern of people, scientists and related the public. And so in Seoul has recognized the healthy effect related to IAQ in schools. Therefore, the objective of this study reported in this article were to measure and compare the perception of IAQ of selected air pollutants at three different schools in Seoul. We performed a questionnaire survey of 400 students about their awareness for the importance of IAQ in our school. And we measured the IAQ of 3 schools considering as site region, construction year and studying level. The indoor air pollutants and parameters such as temperature, relative humidity, respirable particulate matter(PM10), formaldehyde(HCHO), total bacteria counts(TBC), carbon dioxide(CO$_2$), and noise were monitored in indoors. In results, all most response of occupant has recognized the awareness of IAQ at schools. The PMIO, TBC and Noise level of all schools were higher than the standard of the public 150 ${mu}$g/m$^3$ and 500CFU/m$^3$, the level formaldehyde(HCHO) was below 0.1 ppm of the healthy guideline of Korea And the concentration of CO$_2$ were investigated below 1,000 ppm of the standard implying ventilation in 2 schools except for 1 school(c school). Finally, the control of most important pollutants of IAQ in school were PM10, TBC and Noise. Therefore, it can be concluded that the indoor air quality of selected 3 schools studied was perceived as acceptable, it is recommended that the government related IAQ was suggested the guideline and control of IAQ problems in schools, and all member relating school need to be effort to reduce the exposure of sources to undesirable indoor pollutants such as Particlate and Noise.

Utilization of Egg-shell for Bread-making (제빵시 난각의 이용에 관한 연구)

  • Kim, Joong-Man;Kim, Yong-Seob;Yang, Hee-Chon;Choi, Yong-Bae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.18 no.2
    • /
    • pp.160-166
    • /
    • 1989
  • This study was conducted to investigate whether egg-shell may be used as a mineral sourceor leavening agent in breadmaking. In Korea the waste volume of egg shell has been estimated at about 28,694 tons per year. Carbon dioxide generation maxima were established for barking powder$(153{\pm}3ml/g)$, egg-shell(205in reaction with lactic acid) and yeast$(115{\pm}3ml/sugar\;g)$. Gas release time required for each substance to reach $CO_2$ maximum was, for baking powder 7 minutes, for egg-shell 45 mins and for yeast 240 mins. Particle size of egg-shell in breadmaking was suitable more than 20 mesh (-). When egg-shell only was added to the basic formular without including lactic acid, no leavening effect was observed. However, when lactic acid and egg-shell were used together, the leavening effect was more or less equivalent to that of yeast(control). Addition of egg-shell was found to increase calcium content of bread products without noticeable altering flavor, as compared with control. Joint use of egg-shell was organic acids in breadmaking was shown to have potential in time saving, volume increase and yeast saving.

  • PDF