• Title/Summary/Keyword: Carbon dioxide (CO2)

Search Result 1,972, Processing Time 0.029 seconds

Early postoperative treatment of mastectomy scars using a fractional carbon dioxide laser: a randomized, controlled, split-scar, blinded study

  • Shin, Hyun Woo;Suk, Sangwoo;Chae, Seoung Wan;Yoon, Kun Chul;Kim, Junekyu
    • Archives of Plastic Surgery
    • /
    • v.48 no.4
    • /
    • pp.347-352
    • /
    • 2021
  • Background Mastectomy leaves unsightly scarring, which can be distressing to patients. Laser therapy for scar prevention has been consistently emphasized in recent studies showing that several types of lasers, including fractional ablation lasers, are effective for reducing scar formation. Nonetheless, there are few studies evaluating the therapeutic efficacy of ablative CO2 fractional lasers (ACFLs). Methods This study had a randomized, comparative, prospective, split-scar design with blinded evaluation of mastectomy scars. Fifteen patients with mastectomy scars were treated using an ACFL. Half of each scar was randomized to "A," while the other side was allocated to group "B." Laser treatment was conducted randomly. Scars were assessed using digital photographs of the scar and Vancouver scar scale (VSS) scores. Histological assessments were also done. Results The mean VSS scores were 2.20±1.28 for the treatment side and 2.96±1.40 for the control side. There was a significant difference in the VSS score between the treatment side and the control side (P=0.002). The mean visual analog scale (VAS) scores were 4.13±1.36 for the treatment side and 4.67±1.53 for the control side. There was a significant difference in VAS score between the treatment side and the control side (P=0.02). Conclusions This study demonstrated that early scar treatment using an ACFL significantly improved the clinical results of the treatment compared to the untreated scar, and this difference was associated with patient satisfaction.

Effect of Solid $CO_2$ Generator Treatment on Fruit Yield and Quality of Korean Melon(Cucumis melo var. hybrida) (탄산가스 발생제 처리가 참외의 품질 및 수량에 미치는 영향)

  • Shin, Yong Seub;Lee, Ji Eun;Kim, Min Ki;Cheung, Joung Do;Do, Han Woo;Park, Jong Uk;Kim, Jwoo Hwan;Park, Jong Tae;Lee, Soo Tak;Suh, Jun Kyu
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.83-87
    • /
    • 2014
  • The objective of this study was to examine the changes in carbon dioxide ($CO_2$) concentration due to application of solid $CO_2$ generator (Tansansol) in plastic greenhouses during winter cultivation of Korean melon. The experimental treatments consisted of four levels, namely, 0 (control) 10, 20 and 30bags with solid $CO_2$ generator per $600m^2$ of plastic greenhouse. $CO_2$ concentration in plots with solid gas generators was higher by 3.0-3.2% compared to control. Fruit weight, sugar content and color parameter were also enhanced due to application of solid $CO_2$ generator. The fraction of fermentated and unmarketable fruits were decreased by 2.9-3.9% and 5.4-7.3%, respectively, in plots where solid $CO_2$ generators were applied. The marketable yield increased by 10.3, 14.8 and 16.2% in plots with 10, 20 and 30bags with $CO_2$ generators, respectively. As a result, $CO_2$ concentration within the greenhouses was increased by applying $CO_2$ generators and it is positively affected the rate of photosynthesis.

Study of FAME components and total contents on Micro-algal Biodiesel derived from Dunaliella tertiolecta (Dunaliella tertiolecta를 이용한 미세조류 유래 바이오디젤의 FAME 성분 특성 연구)

  • Lee, Don-Min;Min, Kuyung-Il;Yim, Eui-Soon;Ha, Jong-Han;Lee, Choul-Gyun;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.320-328
    • /
    • 2014
  • Biodiesel has very similar physical properties (density, kinematic viscosity) and has even higher cetane number compare with conventional diesel. There are no necessity to change or modify the infra-structure & engine system. It is known that fatty acid methyl ester (FAME) is oxygen-contained components increasing the combustibility, biodegradability and reduced the exhaust harmful gas. These things made the biodiesel more popular as an alternative diesel fuel. But biodiesel's sources are controversial issues about $CO_2$ reduction effect at this time because those mainly come from edible plants such as soy, palm, rapeseed already spent lot of $CO_2$ to cultivate. Whereas micro-algae is focused because they are inedible and has rapid growth rates & high carbon-dioxide adsorption rate per area. In this study, we analyze the each FAME components using $GC{\times}GC$-TOFMS in stead of GC-FID and verify the previous total FAME contents method's applicability through the micro algal biodiesel derived from Dunaliella tertiolecta.

Surface Modification of Microcrystalline Cellulose (MCC) Filler for CO2 Capture (CO2 흡착 충전제 제조를 위한 microcrystalline cellulose (MCC) 입자 표면개질연구)

  • Yang, Yeokyung;Park, Seonghwan;Kim, Hanna;Hwang, Ki-Seob;Ha, KiRyong
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.60-67
    • /
    • 2017
  • In this study, we performed surface modification of biodegradable microcrystalline cellulose (MCC) to use as a filler in polyethylene (PE) composite in food packaging application. We modified MCC surface with (3-trimethoxysilylpropyl)diethylenetriamine (TPDT) silane coupling agent, which has one primary amino group and two secondary amino groups per molecule, to introduce amino groups with a carbon dioxide adsorption capability in MCC. Effects of each of the reaction conditions such as amount of TPDT introduced, swelling time, reaction temperature, and reaction time on surface modification degree of MCC were investigated by changing a variety of above reaction conditions. The amount of TPDT grafted on MCC surface and formation of chemical bonds were confirmed by Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and solid state $^{29}Si$ nuclear magnetic resonance (NMR) spectroscopy. We confirmed increase of grafted amount of TPDT on MCC with increasing reaction time, reaction temperature, and amount of introduced TPDT.

Effect of Halal and Conventional Slaughtering Method with CO2 and N2 Gas Stunning on Physicochemical Traits of Chicken Breast Muscle and Small Intestine (도계 중 할랄방법에 CO2와 N2 가스기절처리가 닭 가슴살과 내장의 물리화학적 특성에 미치는 영향)

  • Song, Dong-Heon;Alam, Shahbubul Muhammad;Lee, Jeong-Ah;Hoa, Van Ba;Kang, Sun Moon;Kim, Hyoun Wook;Jeon, JinJoo;Kang, Hwan Ku;Cho, Soo-Hyun;Seol, Kuk-Hwan
    • Korean Journal of Poultry Science
    • /
    • v.49 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • We investigated the effects of stunning methods and gas treatments during slaughter on the quality characteristics of chicken breast and small intestine. Broilers (Ross 308) were stunned and slaughtered using halal, CO2, or N2 gas stunning methods (for 10 birds). After slaughter, the pH, proximate composition, color, water-holding capacity, cooking loss, and shear force of chicken breast muscle and small intestine were determined. Compared with the halal treatment, CO2 treatment resulted in higher pH and lower cooking loss (P<0.05), and the pH, color, and shear force of chicken breast muscle with N2 treatment were similar to those of the halal treatment (P>0.05). Compared with the halal treatment, the gas treatments resulted in lower pH and lightness and higher redness, yellowness, thickness, and shear force of the small intestine (P<0.05). However, compared with the CO2 treatment, the N2 treatment resulted in lower pH, redness, and yellowness, and higher lightness, thickness, and shear force. Overall, compared with the halal method, our results suggest that the use of N2 gas suppresses the discoloration and deterioration of the texture of chicken meat and small intestine caused by CO2 gas treatment in the gas stunning method.

Transport Properties of CO2 and CH4 using Poly(ether-block-amide)/GPTMS Hybird Membranes (Poly(ether-block-amide)/GPTMS 하이브리드 분리막을 이용한 이산화탄소와 메탄의 투과특성)

  • Lee, Keun Chul;Kim, Hyunjoon
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.653-658
    • /
    • 2016
  • Poly(ether-block-amide)(PEBAX$_{(R)}$) resin is a thermoplastic elastomer combining linear chains of hard-rigid polyamide block interspaced soft-flexible polyether block. It was believed that the hard polyamide block provides the mechanical strength and permselectivity, whereas gas transport occurs primarily through the soft polyether block. The objective of this work was to investigate the gas permeation properties of carbon dioxide and methane for PEBAX$^{(R)}$-1657 membrane, and compare with those obtained for other grade of pure PEBAX$^{(R)}$, PEBAX$^{(R)}$-2533 and PEBAX$^{(R)}$ based hybrid membranes. The hybrid membranes based PEBAX$^{(R)}$ were obtained by a sol-gel process using GPTMS ((3-glycidoxypropyl) trimethoxysilane) as the only inorganic precursor. Molecular structure and morphology of membrane were analyzed by $^{29}Si$-NMR, DSC and SEM. PEBAX$_{(R)}$-2533 membrane exhibited higher gas permeability coefficients than PEBAX$^{(R)}$-1657 membrane. This was explained by the increase of chain mobility. In contrast, ideal separation factor of $CO_2/CH_4$ for PEBAX$^{(R)}$-1657 membrane was higher than PEBAX$^{(R)}$-2533 membrane. It was explained by the decrease of diffusion selectivity caused by increase of chain mobility. For PEBAX$^{(R)}$/GPTMS hybrid membrane, gas permeability coefficients were decreased with reaction time. Gas permeability coefficient of $CH_4$ was more significantly decreased than $CO_2$. It can be explained by the reduction of chain mobility caused by the sol-gel process, and strong affinity of PEO segment with $CO_2$. Comparing with pure PEBAX$^{(R)}$-1657 membrane, ideal separation factor of $CO_2/CH_4$ for PEBAX$^{(R)}$/GPTMS hybrid membrane has decreased to 4.5%, and gas permeability coefficient of $CO_2$ has increased 3.5 times.

Effects of Active Modified Atmosphere Packaging on the Storability of Fresh-cut Paprika (Active MAP가 파프리카 신선편이 저장성에 미치는 영향)

  • Choi, In-Lee;Yoo, Tae-Jong;Jung, Hyun-Jin;Kim, Il-Seop;Kang, Ho-Min;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.20 no.3
    • /
    • pp.227-232
    • /
    • 2011
  • The processing techniques are need to use the non-marketable paprika fruit because paprika that is difficult crop for cultivation and produced easily non-marketable fruits, such as physiological disorder fruit, malformed fruit, and small size fruit. This study was carried out to investigate the proper active modified atmosphere packaging (MAP) condition for enhancing the storability of fresh-cut paprika fruit. The fresh-cut paprika (cv 'Score', seminis) put into $7cm{\times}0.7cm$ size and packed them in 20 g bags. The active MAP and vacuum treated paprika fruits were packaged with LLDPE/Nylon, EVOH, Tie film, and injected partial pressures of $CO_2$ and $O_2$, and $N_2$ in the packages immediately after sealing to treat active MAP. The ratio of $CO_2$, $O_2$, and $N_2$ of active MAP conditions were 0 : 20 : 80 (air), 5 : 5 : 90, 30 : 10 : 60, 10 : 70 : 20 and vacuum treatment did not contain any gas. The passive packaging treated paprika packaged with $40{\mu}m$ ceramic film. After 7 days of storage at $9^{\circ}C$, the fresh weight decreased less than 2% in all treatments, and showed lower in 5 : 5 : 90 ($CO_2:O_2:N_2$) active-MAP treatment and higher in vacuum treatment than other treatments. The $CO_2$ and $O_2$ concentration in packages did not change remarkably in active-MA treatments except 30 : 10 : 60 active-MAP treatment that showed sharply decreased $O_2$, concentration and increased $CO_2$ concentration at $1^{st}$ day of storage at $9^{\circ}C$. The ethylene concentration in package was the highest in 30 : 10 : 60 active-MAP treatment and the lowest in the passive MAP treatment that packaged with gas permeable film during $9^{\circ}C$ storage for 7 days. The 30 : 10 : 60 active-MAP treatments were not proper condition to storage fresh-cut paprika. The visual quality was maintained higher in 0 : 20 : 80 (air), 5 : 5 : 90, and 10 : 70 : 20 active MAP treatments and passive MAP treatment than others and the firmness, off-odor, and electrolyte leakage was investigated at 7th day of storage at $9^{\circ}C$. The 5 : 5 : 90 and 10 : 70 : 20 active-MAP treatment showed higher firmness and lower off-odor than other treatments after $7^{th}$ day of storage at $9^{\circ}C$. In addition, the electrolyte leakage was reduced less than 20% at 0 : 20 : 80 (air), 5 : 5 : 90, 10 : 70 : 20, and passive MA treatments. Therefore, 10 : 70 : 20 ($CO_2:O_2:N_2$) and 0 : 20 : 80 (air) might be recommended for proper active MAP conditions.

The Real Scale Fire Test for Fire Safety in Apartment Housing (실물화재실험을 통한 공동주택의 화재안전성 연구)

  • Yoo, Yong-Ho;Kweon, Oh-Sang;Kim, Heung-Youl
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.57-65
    • /
    • 2009
  • This study was intended to conduct a Real-scale fire test to predict the fire behavior by unit space at the apartment building where a huge casualties and injuries are likely. After setting the inflammables inside the house, the test aimed to identify the fire characteristics to each unit item was carried out. The house was divided into 4 unit space such as kitchen, living room, bedroom and a study for a real scale fire test. As a result, bedroom reached to flashover state in 5minutes after setting the fire, indicating a rapid fire growth such as 7433.3kW of maximum thermal emissivity, 578.6ppm of carbon monoxide, 1.25ppm of carbon dioxide and $1,350^{\circ}C$ of maximum indoor temperature. Particularly, the fire growth was made up to critical temperature which might cause a severe damage to the people within 3minutes, if the fire were not extinguished at inflammable space at the early stage of fire, which stressed the need of early response. The result of a real scale fire test could be compared with the outcome of expanded simulation test and used in predicting the fire spread at the space for different use.

Analysis of the growth environment and fruiting body quality of Pleurotus eryngii cultivated by Smart Farming (큰느타리(새송이)버섯 스마트팜 재배를 통한 생육환경 분석 및 자실체 품질 특성)

  • Kim, Kil-Ja;Kim, Da-Mi;An, Ho-Sub;Choi, Jin-Kyung;Kim, Seon-Gon
    • Journal of Mushroom
    • /
    • v.17 no.4
    • /
    • pp.211-217
    • /
    • 2019
  • Currently, cultivation of mushrooms using the Information and Communication Technology (ICT)-based smart farming technique is increasing rapidly. The main environmental factors for growth of mushrooms are temperature, humidity, carbon dioxide (CO2), and light. Among all the mentioned factors, currently, only temperature has been maintained under automatic control. However, humidity and ventilation are controlled using a timer, based on technical experience.Therefore, in this study, a Pleurotus eryngii first-generation smart farm model was set up that can automatically control temperature, humidity, and ventilation. After installing the environmental control system and the monitoring device, the environmental condition of the mushroom cultivation room and the growth of the fruiting bodies were studied. The data thus obtained was compared to that obtained using the conventional cultivation method.In farm A, the temperature during the primordia formation stage was about 17℃, and was maintained at approximately 16℃ during the fruiting stage. The humidity was initially maintained at 95%, and the farm was not humidified after the primordia formation stage. There was no sensor for CO2 management, and the system was ventilated as required by observing the shape of the pileus and the stipe. It was observed that, the concentration of CO2 was between 700 and 2,500 ppm during the growth period. The average weight of the mushrooms produced in farm A was 125 g, and the quality was between that of the premium and the first grade.In farm B. The CO2 sensor was in use for measurement purposes only; the system was ventilated as required by observing the shape of the pileus and the stipe. During the growth period, the CO2 concentration was observed to be between 640 and 4,500 ppm. The average weight of the mushrooms produced in farm B was 102 g.These results indicate that the quality of the king oyster mushroom is determined by the environmental conditions, especially by the concentration of CO2. Thus, the data obtained in this study can be used as an optimal smart farm model, where, by improving the environmental control method of farm A, better quality mushrooms were obtained.

Effect on Quality Change of Cherry Tomato by $CO_2$ Concentration of Flushed Gas and Storage Period (충전가스의 $CO_2$ 함량 및 노출기간의 변화가 방울토마토의 품질변화에 미치는 영향)

  • Lee, Seung Yuan;Lee, Seung Jae;Choi, Dong Soo;Hur, Sun Jin
    • Culinary science and hospitality research
    • /
    • v.20 no.6
    • /
    • pp.200-210
    • /
    • 2014
  • The purpose of this study was to investigate the quality changes and contamination of microorganisms such as Escherichia coli, mold and yeast in cherry tomatoes during storage at different temperatures, gas composition and periods(7 and 14 days). This study determined pH, color change and the growth pattern of microorganisms in cherry tomato during storage at $5^{\circ}C$, $10^{\circ}C$ and $15^{\circ}C$. According to the results, pH level was a little raised with storage period. On average, $L^*$, $a^*$ and $b^*$ value of cherry tomato were irregular value of increase and decrease of all gas packaging with storage period. In regard of the types of microorganism, aerobic count plate, coliform count, mold and yeast were detected when cherry tomatoes were stored at $5^{\circ}C$, $10^{\circ}C$ and $15^{\circ}C$ during storage for 14 days. Equally, all microorganisms of cherry tomato were irregular with storage period and complex gas packaging. However, this study determined that packaging with a higher $CO_2$ concentration than $O_2$ concentration can reduce growth of microorganism. These studies can be used as primary data for determining the optimal complex gas to storage enlargement.