• Title/Summary/Keyword: Carbon dioxide (CO2)

Search Result 1,982, Processing Time 0.031 seconds

Variations in Nutrients & CO2 Uptake Rates and Photosynthetic Characteristics of Saccharina japonica from the South Coast of Korea (다시마(Saccharina japonica)의 생장에 따른 영양염 및 CO2 흡수율과 광합성 특성 변화)

  • Hwang, Jae-Ran;Shim, Jeong-Hee;Kim, Jeong-Bae;Kim, Sook-Yang;Lee, Yong-Hwa
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.4
    • /
    • pp.196-205
    • /
    • 2011
  • To investigate the contribution of macroalgae to biogeochemical nutrients and carbon cycles, we measured the uptake rates of nutrients and $CO_2$ and characteristics of fluorescence of Saccharina japonica (Laminaria japonica Areschoug) using an incubation method in an acrylic chamber. From January to May 2011, S.japonica was sampled at Ilkwang, one of well-known macroalgae culture sites around Korea and ranged 46~288 cm long and 4.8~22.0 cm wide of whole thallus. The production rate of dissolved oxygen by S. japonica (n=25) was about $6.9{\pm}5.8{\mu}mol\;g^{-1}$ fresh weight(FW) $h^{-1}$. The uptake rate of total dissolved inorganic carbon ($TCO_2$), calculated by total alkalinity and pH, was $8.9{\pm}7.9{\mu}mol\;g^{-1}\;FW\;h^{-1}$. Mean nutrients uptake were $175.6{\pm}161.1\;nmol\;N\;g^{-1}\;FW\;h^{-1}$ and $12.7{\pm}10.1\;nmol\;P\;g^{-1}\;FW\;h^{-1}$. There were logarithmic relationships between thallus length and uptake rates of nutrients and $CO_2$, which suggested that younger specimens (<100-150 cm) were much more efficient at nutrients and $CO_2$ uptake than old specimens > 150 cm. There was a positive linear correlation ($r^2$=9.4) existed between the dissolved oxygen production rate and the $TCO_2$ uptake rate, suggesting that these two factors may serve as good indicators of S. japonica photosynthesis. There was also positive linear relationship between maximal quantum yield ($F_v/F_m$) and production/uptake rates of dissolved oxygen, $TCO_2$ and phosphate, suggested that $F_v/F_m$ could be used as a good indicator of photosynthetic ability and $TCO_2$ consumption of macroalgae. Maximum relative electron transport rate ($rETR_{max}$) of S. japonica increased as thallus grew and was high in distal part of thallus which may be resulted from the increase of photosynthetic cell density per area. The annual $TCO_2$ uptake by S. japonica in Gijang area was estimated about $1.0\sim1.7{\times}10^3C$ ton, which was about 0.02-0.03% of carbon dioxide emission in Busan City. Thus, more research should be focused on macroalgae-based biogeochemical cycles to evaluate the roles and contributions of macroalgae to the global carbon cycle.

A Study on the Effect of Automotive Engine Performance by Using Carbon Nano Colloid Cooling Water (탄소나노콜로이드 냉각수를 사용하여 자동차 엔진성능의 향상에 관한 연구)

  • Yi, Chung-Seob;Lee, Byung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.134-142
    • /
    • 2011
  • Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Exhaust pipes with circular fin were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NOx), carbon dioxide ($CO_2$) and carbon monoxide (CO). In addition, $O_2$ concentration in the exhaust was measured. The designs adopted in this study were about exhaust pipes with solid and hollow fins around them direct surface force measurement in water using a nano size colloidal probe technique. The direct force measurement between colloidal surfaces has been an essential topic in both theories and applications of surface chemistry. As particle size is decreased from micron size down to true Carbon nano Colloid size (<10 nm), surface forces are increasingly important. Nano particles at close proximity or high solids loading are expected to show a different behavior than what can be estimated from continuum and mean field theories. The current tools for directly measuring interaction forces such as a surface force apparatus or atomic force microscopy (AFM) are limited to particles much larger than nano size. This paper use Water and CNC fluid at normal cooling system of EGR. Experimental result showed all good agreement at Re=$2.54{\times}10^4$ by free convection and Re=$3.36{\times}10^4$ by forced air furnace.

Development of Fast-Response Portable NDIR Analyzer Using Semiconductor Devices

  • Kim, Woo-Seok;Lee, Jong-Hwa;Park, Young-Moo;Yoo, Jai-Suk;Park, Kyoung-Seok
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2099-2106
    • /
    • 2003
  • In this paper, a novel fast response NDIR analyzer (FRNDIR), which uses an electrically pulsed semiconductor emitter and dual type PbSe detector for the PPM-level detection of carbon dioxide (CO$_2$) at a wavelength of 4.28 $\mu\textrm{m}$, is described. Modulation of conventional NDIR energy typically occurs at 1 to 20 Hz. To achieve real time high-speed measurement, the new analyzer employs a semiconductor light emitter that can be modulated by electrical chopping. Updated measurements are obtained every one millisecond. The detector has two independent lead selenide (PbSe) with IR band pass filters. Both the emitter accuracy and the detector sensitivity are increased by thermoelectric cooling of up to -20 degrees C in all semiconductor devices. Here we report the use of semiconductor devices to achieve improved performance such that these devices have potential application to CO$_2$ gas measurement and, in particular, the measurement of fast response CO$_2$ concentration at millisecond level.

A Technical Description on The Safety Aspects related To Gas Suppression Fire Protection System (가스계 소화시스템관련 안전기술)

  • 이창욱
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.21-29
    • /
    • 2002
  • With regard to the personnel safety and other safety when the gas suppressants are discharged into the area where occupants exist, the short term and long term effects to the health of people are discussed mainly with the Carbon dioxide agent and Halon Replacement agents system. To gain the benefits of CO2 extinguishing systems while minimizing risk to people serious attention must be given to personnel safety in the design, installation, and maintenance of CO2 systems. Training of personnel is essential. A major factor in the use of a clean agent fire suppressant in a normally occupied area is toxicity. While all halocarbon agents are tested for long-term health hazards, the primary endpoint is acute or short-term exposure, The primary acute toxicity effects of the halocarbon agents described here are anesthesia and cardiac sensitization. For inert gases, the primary physiological concern is reduced oxygen concentration.

  • PDF

Polymerization of Methyl Methacrylate in Carbon Dioxide Using Glycidyl Methacrylate Linked Reactive Stabilizer: Effect of Pressure, Reaction Time, and Mixing

  • Han, Sang-Hun;Park, Kyung-Kyu;Lee, Sang-Ho
    • Macromolecular Research
    • /
    • v.17 no.1
    • /
    • pp.51-57
    • /
    • 2009
  • Using glycidyl methacrylate-linked poly(dimethylsiloxane), methyl methacrylate was polymerized in supercritical $CO_2$. The effects of $CO_2$ pressure, reaction time, and mixing on the yield, molecular weight, and molecular weight distribution (MWD) of the poly(methyl methacrylate) (PMMA) products were investigated. The shape, number average particle diameter, and particle size distribution (PSD) of the PMMA were characterized. Between 69 and 483 bar, the yield and molar mass of the PMMA products showed a trend of increasing with increasing $CO_2$ pressure. However, the yield leveled off at around 345 bar and the particle diameter of the PMMA increased until the pressure reached 345 bar and decreased thereafter. With increasing pressure, MWD became more uniform while PSD was unaffected. As the reaction time was extended at 207 bar, the particle diameter of PMMA decreased at $0.48{\pm}0.03%$ AIBN, but increased at 0.25% AIBN. Mixing the reactant mixture increased the PMMA yield by 18.6% and 9.3% at 138 and 207 bar, respectively.

CO2 Solubilities in Amide-based Brønsted Acidic Ionic Liquids

  • Palgunadi, Jelliarko;Im, Jin-Kyu;Kang, Je-Eun;Kim, Hoon-Sik;Cheong, Min-Serk
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.146-150
    • /
    • 2010
  • A distinguished class of hydrophobic ionic liquids bearing a Br${\o}$nsted acidic character derived from amide-like compounds were prepared by a neutralization reaction of N,N-diethylformamide, N,N-dibutylformamide, 1-formylpiperidine, and $\varepsilon$-caprolactam with trifluoroacetic acid and physical absorptions of $CO_2$ in these ionic liquids were demonstrated and evaluated. $CO_2$ solubilities in these ionic liquids were influenced by the molecular structure of the cation and were apparently increased with the molar volume. Comparison based on a volume unit reveals that $CO_2$ solubilities in these liquids are relatively higher than those in imidazolium-based ionic liquids. Henry's coefficients calculated from low-pressure solubility tests at 313 to 333 K were used to derive the thermodynamics quantities. Enthalpy and entropy of solvation may share equal contributions in solubility.

Ambient adsorption of $CO_2$ using an inorganic sorbent (무기흡착제를 이용한 $CO_2$의 상온흡착)

  • Jo, Young-Min;Lee, Ju-Yeol;Park, Young-Koo;Park, Joon-Seok;Kim, Seung-Ho;Ko, Jae-Churl
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.92-97
    • /
    • 2007
  • The present paper deals with gaseous carbon dioxide separation by a commercial adsorbent: X-type zeolite. Experimental work was carried out at an ambient condition focusing on how well meeting to the national guideline. A few types of reactor and material were examined, and practical capability was found in a granular bed type reactor with the flow of 2.5 CMM. An optimum design of reactor and adsorbent could provide the required concentration, less than 2500 ppm, for the continuous operation up to 10 hours. More work including automatic regeneration is now underworking.

Adsorption of Carbon Dioxide onto Tetraethylenepentamine Impregnated PMMA Sorbents with Different Pore Structure

  • Jo, Dong Hyun;Park, Cheonggi;Jung, Hyunchul;Kim, Sung Hyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.382-390
    • /
    • 2015
  • Poly(methyl methacrylate) (PMMA) supports and amine additives were investigated to adsorb $CO_2$. PMMA supports were fabricated by using different ratio of pore forming agents (porogen) to control the BET specific surface area, pore volume and distribution. Toluene and xylene are used for porogens. Supported amine sorbents were prepared by wet impregnation of tetraethylenepentamine (TEPA) on PMMA supports. So we could identify the effect of the pore structure of supports and the quantity of impregnated TEPA on the adsorption capacity. The increased amount of toluene as pore foaming agent resulted in the decreased average pore diameter and the increased BET surface area. Polymer supports with huge different pore distribution could be fabricated by controlling the ratio of porogen. After impregnation, the support with micropore structure is supposed the pore blocking and filling effect so that it has low $CO_2$ capacity and kinetics due to the difficulty of diffusing. Macropore structure indicates fast adsorption capacity and low influence of amine loading. In case of support with mesopore, it has high performance of adsorption capacity and kinetics. So high surface area and meso-/macro- pore structure is suitable for $CO_2$ capture.

Simulation Study on the Performance Characteristics of a $CO_2$ Cooling System with an Expander (팽창기를 적용한 이산화탄소 냉방시스템의 성능특성에 관한 해석적 연구)

  • Cho, Hong-Hyun;Baek, Chang-Hyun;Ryu, Chang-Gi;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.9
    • /
    • pp.630-639
    • /
    • 2007
  • A $CO_2$ cycle shows large throttling loss during the expansion process. The application of an expander into the $CO_2$ cycle can reduce the throttling loss and then improve system performance. In this study, the performance of a transcritical $CO_2$ cycle with an expander was analytically investigated in order to improve the cooling performance of the system. The expander was applied to the single-stage and two-stage compression cycles. The performance was analyzed with the variations of compressor frequency, outdoor temperature, and expander efficiency. The single-stage and two-stage compression cycles with the expander showed COP improvement of 25% and 32%, respectively, over the single-stage cycle with an EEV.

A Strength on the Properties of Non-Cement Mortar containing Rice Husk Powder extracted from Digestion (증해 추출 왕겨 분말을 혼입한 무시멘트 모르타르의 강도 특성)

  • Cho, Sung-Eun;Cho, Sung-Won;Kim, Young-Su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.225-226
    • /
    • 2021
  • Recently, environmental problems have emerged as a major issue all over the world due to an increase in carbon dioxide(CO2). The amount of CO2 generated during cement production accounts for 6% to 8% of domestic CO2 emissions and a solution to reduce CO2 emissions the construction industry is trying to use mineral admixtures to reduce cement. Since digestion has no firing process the advantage of it is that there is no air pollution to occur. In this study, we studied the compressive strength of binary non-cement mortar containing rice husk powder extracted from digestion by the ratio of 10%, 20%, 30%, 40%. As a result, the table flow was increased when the mixing rate of rice husk powder extracted from digestion was higher, and the highest compressive strength was shown when the rice husk powder extracted from digestion mixing rate was 10%.

  • PDF