• Title/Summary/Keyword: Carbon depth profile

Search Result 34, Processing Time 0.021 seconds

Ziziphus spina christifor Sustainable Agroforestry Farming in Arid Land of Khartoum State of Sudan

  • Mustafa Abdalla Nasre Aldin;Hussein Alawad Seid Ahmed;Mohamed El Mukhtar Ballal;Adil Mahgoub Farah
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.1
    • /
    • pp.20-26
    • /
    • 2023
  • Cow pea (Vigna unguiculata) was intercropped with Ziziphus spina-christi as summer forage in two consecutive seasons of 2017 and 2018. The aims to find out suitable agroforestry practice for saline soils of Khartoum State. And to investigate effect of tree spacing on forage biomass yield under semi -irrigated systems. Completely randomized block design with 3 replicates was conducted for this trial. Thus Z.spina-christi that fixed at 4×4 m was intercropped with cowpea at 1 m and 1.5 m spacing from trees trunk. Tree growth parameters were measured in terms of tree height, tree collar diameter, tree crown diameter and fruit yield per tree. While crop were parameters were determined in terms of plant height, number of plant, forage biomass yield per ha and land equivalent ratio. Soil profile of 1×1 m and 1.5 m depth was excavated and its features were described beside its chemical and physical properties were analyzed for 0-10 cm, 0-30 cm, and 30-60 cm and 60-100 cm layers. The results revealed that soil pH, CaCO3, SAR, ESP, and EC ds/m were increased by increasing soil depths. Meanwhile tree growth in terms of tree height was significant in the first season 2017 when compared with tree collar diameter and tree crown diameter. Also significant differences were recorded for tree growth when compared with sole trees in the second season in 2018. Tree fruit showed marked variations between the two seasons, but it was higher under intercropping particularly at ZS2. Crop plant height was highly significant under sole cropping than intercropping in first season in 2017. In contrast forage biomass yield was significant under intercropping in ZS1 and ZS2 treatments. Land equivalent ratio was advantageous under this agroforestry system particularly under ZS2. Thus it recorded 5 and 9 for ZS2 in the two consecutive seasons respectively. Therefore, it is feasible to introduce this agroforestry system under such arid lands to provide summer forage yield of highly nutritive value and low cost for animals feed as well as to increase farmers' income and to halt desertification and to sequester carbon.

Determination of Total CO2 and Total Alkalinity of Seawater Based on Thermodynamic Carbonate Chemistry (해수중의 총이산화탄소와 총알칼리도 분석을 위한 탄산염 화학 이론 및 측정방법)

  • Mo, Ahra;Son, Juwon;Park, Yongchul
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • To evaluate accuracy and precision of determination of total alkalinity ($Alk_T$) and carbon dioxide ($TCO_2$) derived from present study, experiment was applied with $CO_2$ CRM (Batch 132, Scripps Institution of Oceanography; $Alk_T=2229.24{\pm}0.39{\mu}mol/kg$, $TCO_2=2032.65{\pm}0.45{\mu}mol/kg$). As the result, average concentration of $Alk_T$ and $TCO_2$ was $2354.09{\mu}mol/kg$ (~5.6% difference with $CO_2$ CRM) and $2089.60{\mu}mol/kg$ (~2.3% difference with $CO_2$ CRM), respectively. For previous method (Gran Titration) by addition $NaHCO_3$ to deionized water($Alk_T$ $2023.33{\mu}mol/kg$), average concentration was $2193.39{\mu}mol/kg$ (sd=57.15, n=7). Whereas, average concentration was $2017.02{\mu}mol/kg$ (sd=10.98, n=7) for the present study. Recovery yield experiments of total alkalinity in deionized water and seawater were implemented by addition of $NaHCO_3$. The recovery yield of deionized water in the range 0 to $4952.39{\mu}mol/kg$ was 100.8% ($R^2$=0.999), and seawater in the range 0 to $2041.32{\mu}mol/kg$ was 102.3% ($R^2$=0.999). Comparison of $pCO_2$ sensor (PSI $CO_2-Pro^{TM}$) with present method showed very meaningful correlation coefficient ($R^2$=0.977) in the range of 427 to $705{\mu}atm$ and 9.16 to $15.24{\mu}mol/kg$ throught elapsed time for two weeks. Field experiment of diurnal variation of total carbon dioxide was accomplished at Sachon harbor in the coastal waters of East Sea of Korea. Concentration of $Alk_T$ and $TCO_2$ was increased during night, and decreased during daylight hours. The results showed mirror type between $TCO_2$ and dissolved oxygen, which was attributable to photosynthesis and respiration of phytoplankton. Also, open ocean field study was performed to obtain vertical profile of $Alk_T$ and $TCO_2$ in C-C zone (Clarion-Clipperton Fracture Zone), Northeastern Pacific. Average concentrations of $Alk_T$ in the surface mixed layer (0~60 m) and deeper layer below 200 m were $2422.38{\mu}mol/kg$ (sd=78.73, n=20) and $2465.87{\mu}mol/kg$ (sd=57.68, n=103), respectively. And average concentrations of $TCO_2$ were $2134.47{\mu}mol/kg$ (sd=65.4, n=20) and $2431.87{\mu}mol/kg$ (sd=65.02, n=103) in the same depth ranges such as $Alk_T$. Vertical distributions of $Alk_T$ and $TCO_2$ concentrations tended to increase with depth, and analyzed concentrations showed slightly higher than those of previous studies in this area.

Characteristics and classification of paddy soils on the Gimje-Mangyeong plains (김제만경평야(金堤萬頃平野)의 답토양특성(沓土壤特性)과 그 분류(分類)에 관(關)한 연구(硏究))

  • Shin, Yong Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.5 no.2
    • /
    • pp.1-38
    • /
    • 1972
  • This study, designed to establish a classification system of paddy soils and suitability groups on productivity and management of paddy land based on soil characteristics, has been made for the paddy soils on the Gimje-Mangyeong plains. The morphological, physical and chemical properties of the 15 paddy soil series found on these plains are briefly as follows: Ten soil series (Baeggu, Bongnam, Buyong, Gimje, Gongdeog, Honam, Jeonbug, Jisan, Mangyeong and Suam) have a B horizon (cambic B), two soil series (Geugrag and Hwadong) have a Bt horizon (argillic B), and three soil series (Gwanghwal, Hwagye and Sindab) have no B or Bt horizons. Uniquely, both the Bongnam and Gongdeog series contain a muck layer in the lower part of subsoil. Four soil series (Baeggu, Gongdeog, Gwanghwal and Sindab) generally are bluish gray and dark gray, and eight soil series (Bongnam, Buyong, Gimje, Honam, Jeonbug, Jisan, Mangyeong and Suam) are either gray or grayish brown. Three soil series (Geugrag, Hwadong and Hwagye), however, are partially gleyed in the surface and subsurface, but have a yellowish brown to brown subsoil or substrata. Seven soil series (Bongnam, Buyong, Geugrag, Gimje, Gongdeog, Honam and Hwadong) are of fine clayey texture, three soil series (Baeggu, Jeonbug and Jisan) belong to fine loamy and fine silty, three soil series (Gwanghwal, Mangyeong and Suam) to coarse loamy and coarse silty, and two soil series (Hwagye and Sindab) to sandy and sandy skeletal texture classes. The carbon content of the surface soil ranges from 0.29 to 2.18 percent, mostly 1.0 to 2.0 percent. The total nitrogen content of the surface soil ranges from 0.03 to 0.25 percent, showing a tendency to decrease irregularly with depth. The C/N ratio in the surface soil ranges from 4.6 to 15.5, dominantly from 8 to 10. The C/N ratio in the subsoil and substrata, however, has a wide range from 3.0 to 20.25. The soil reaction ranges from 4.5 to 8.0. All soil series except the Gwanghwal and Mangyeong series belong to the acid reaction class. The cation exchange cpacity in the surface soil ranges from 5 to 13 milliequivalents per 100 grams of soil, and in all the subsoil and substrata except those of a sandy texture, from 10 to 20 milliequivalents per 100 grams of soil. The base saturation of the soil series except Baeggu and Gongdeog is more than 60 percent. The active iron content of the surface soil ranges from 0.45 to 1.81 ppm, easily-reduceable manganese from 15 to 148 ppm, and available silica from 36 to 366 ppm. The iron and manganese are generally accumulated in a similar position (10 to 70cm. depth), and silica occurs in the same horizon with that of iron and manganese, or in the deeper horizons in the soil profile. The properties of each soil series extending from the sea shore towards the continental plains change with distance and they are related with distance (x) as follows: y(surface soil, clay content) = $$-0.2491x^2+6.0388x-1.1251$$ y(subsoil or subsurface soil, clay content) = $$-0.31646x^2+7.84818x-2.50008$$ y(surface soil, organic carbon content) = $$-0.0089x^2+0.2192x+0.1366$$ y(subsoil or subsurface soil, pH) = $$-0.0178x^2-0.04534x+8.3531$$ Soil profile development, soil color, depositional and organic layers, soil texture and soil reaction etc. are thought to be the major items that should be considered in a paddy soil classification. It was found that most of the soils belonging to the moderately well, somewhat poorly and poorly drained fine and medium textured soils and moderately deep fine textured soils over coarse materials, produce higher paddy yields in excess of 3,750 kg/ha. and most of the soils belonging to the coarse textured soils, well drained fine textured soils, moderately deep medium textured soils over coarse materials and saline soils, produce yields less than 3,750kg/ha. Soil texture of the profile, available soil depth, salinity and gleying of the surface and subsurface soils etc. seem to be the major factors determining rice yields, and these factors are considered when establishing suitability groups for paddy land. The great group, group, subgroup, family and series are proposed for the classification categories of paddy soils. The soil series is the basic category of the classification. The argillic horizon (Bt horizon) and cambic horizon (B horizon) are proposed as two diagnostic horizons of great group level for the determination of the morphological properties of soils in the classification. The specific soil characteristics considered in the group and subgroup levels are soil color of the profile (bluish gray, gray or yellowish brown), salinity (salic), depositonal (fluvic) and muck layers (mucky), and gleying of surface and subsurface soils (gleyic). The family levels are classified on the basis of soil reaction, soil texture and gravel content of the profile. The definitions are given on each classification category, diagnostic horizons and specific soil characteristics respectively. The soils on these plains are classified in eight subgroups and examined under the existing classification system. Further, the suitability group, can be divided into two major categories, suitability class and subclass. The soils within a suitability class are similar in potential productivity and limitation on use and management. Class 1 through 4 are distinguished from each other by combination of soil characteristics. Subclasses are divided from classes that have the same kind of dominant limitations such as slope(e), wettness(w), sandy(s), gravels(g), salinity(t) and non-gleying of the surface and subsurface soils(n). The above suitability classes and subclasses are examined, and the definitions are given. Seven subclasses are found on these plains for paddy soils. The classification and suitability group of 15 paddy soil series on the Gimje-Mangyeong plains may now be tabulated as follows.

  • PDF

Soil Classification of Paddy Soils by Soil Taxonomy (미국신분류법(美國新分類法)에 의(依)한 답토양의 분류(分類)에 관한 연구)

  • Joo, Yeong-Hee;Shin, Yong-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.2
    • /
    • pp.97-104
    • /
    • 1979
  • According to Soil Taxonomy which has been developed over the past 20 years in the soil conservation service of the U. S. D. A, Soils in Korea are classified. This system is well suited for the classification of the most of soils. But paddy field soils have some difficulties in classification because Soil Taxonomy states no proposals have yet been developed for classifying artificially irrigated soils. This paper discusses some problems in the application of Taxonomy and suggestes the classification of paddy field soils in Korea. Following is the summary of the paper. 1. Anthro aquic, Aquic Udipsamments : The top soils of these soils are saturated with irrigated water at some time of year and have mottles of low chroma(2 or less) more than 50cm of the soil surface. (Ex. Sadu, Geumcheon series) 2. Anthroaquic Udipsamments : These sails are like Anthroaquic, Aquic Udipsamments except for the mottles of low chroma within 50cm of the soil surface. (Ex. Baegsu series) 3. Halic Psammaquents : These soils contain enough salts as distributed in the profile that they interfere with the growth of most crop plants and located on the coastal dunes. The water table fluctuates with the tides. (Ex. Nagcheon series) 4. Anthroaquic, Aquic Udifluvents : They have some mottles that have chroma of 2 or less in more than 50cm of the surface. The upper horizon is saturated with irrigated water at sometime. (Ex. Maryeong series) 5. Anthro aquic Udifluvents : These soils are saturated with irrigated water at some time of year and have mottles of low chroma(2 or less) within 50cm of the surface soils. (Ex. Haenggog series) 6. Fluventic Haplaquepts : These soils have a content of organic carbon that decreases irregularly with depth and do not have an argillic horizon in any part of the pedon. Since ground water occur on the surface or near the surface, they are dominantly gray soils in a thick mineral regolith. (Ex Baeggu, Hagseong series) 7. Fluventic Thapto-Histic Haplaquepts : These soils have a buried organic matter layer and the upper boundary is within 1m of the surface. Other properties are same as Fluventic Haplaquepts. (Ex. Gongdeog, Seotan series) 8. Fluventic Aeric Haplaquepts : These soils have a horizon that has chroma too high for Fluventic Haplaquepts. The higher chroma is thought to indicate either a shorter period of saturation of the whole soils with water or some what deeper ground water than in the Fluventic Haplaquepts. The correlation of color with soil drainage classes is imperfect. (Ex. Mangyeong, Jeonbug series) 9. Fluventic Thapto-Histic Aeric Haplaquepts : These soils are similar to Fluventic Thapto Histic Haplaquepts except for the deeper ground water. (Ex. Bongnam series) 10. Fluventic Aeric Sulfic Haplaquepts : These soils are similar to Fluventic Aeric Haplaquepts except for the yellow mottles and low pH (<4.0) in some part between 50 and 150cm of the surface. (Ex. Deunggu series) 11. Fluventic Sulfaquepts : These soils are extremely acid and toxic to most plant. Their horizons are mostly dark gray and have yellow mottles of iron sulfate with in 50cm of the soil surface. They occur mainly in coastal marshes near the mouth of rivers. (Ex. Bongrim, Haecheog series) 12. Fluventic Aeric Sulfaquepts : They have a horizon that has chroma too high for Fluventic Sulfaquepts. Other properties are same as Fluventic Sulfaquepts. (Ex. Gimhae series) 13. Anthroaquic Fluvaquentic Eutrochrepts : These soils have mottles of low chroma in more than 50cm of the surface due to irrigated water. The base saturation is 60 percent or more in some subhroizon that is between depth of 25 and 75cm below the surface. (Ex. Jangyu, Chilgog series) 14. Anthroaquic Dystric Fluventic Eutrochrepts : These soils are similar to Anthroaquic Fluvaquentic Eutrochrepts except for the low chroma within 50cm of the surface. (Ex. Weolgog, Gyeongsan series) 15. Anthroaquic Fluventic Dystrochrepts : These soils have mottles that have chroma of 2 or less within 50cm of the soil surface due to artificial irrigation. They have lower base saturation (<60 percert) in all subhorizons between depths of 25 and 75cm below the soil surface. (Ex. Gocheon, Bigog series) 16. Anthro aquic Eutrandepts : These soils are similar to Anthroaquic Dystric Fluventic Eutrochrepts except for lower bulk density in the horizon. (Ex. Daejeong series) 17. Anthroaquic Hapludalfs : These soils' have a surface that is saturated with irrigated water at some time and have chroma of 2 or less in the matrix and higher chroma of mottles within 50cm of the surface. (Ex. Hwadong, Yongsu series) 18. Anthro aquic, Aquic Hapludalfs : These soils are similar to Anthro aquic Hapludalfs except for the matrix that has chroma 2 or less and higher chroma of mottles in more than 50cm of the surface. (Ex. Geugrag, Deogpyeong se ries)

  • PDF