• Title/Summary/Keyword: Carbon depth profile

Search Result 34, Processing Time 0.028 seconds

Penetration behavior by carbon potential in laser-carburized TiZrN coatings (TiZrN 코팅의 레이저 침탄에서 탄소 포텐셜에 따른 침입 거동)

  • Lee, Byunghyun;Kim, Taewoo;Hong, Eunpyo;Kim, Seonghoon;Lee, Heesoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.6
    • /
    • pp.282-286
    • /
    • 2021
  • Penetration depth and compressive residual stress of laser-carburized TiZrN coating by thickness of carbon paste were investigated in terms of carbon potential. The carbon paste was covered with a thickness of 1.1 mm using screen printing, and applied to a thickness of 0.4 mm using spin coating, and laser carburization was performed under the same conditions. As the thickness of carbon paste increased, the diffraction pattern of the laser-carburized TiZrN coating shifted to a lower angle, indicating solid solution strengthening and lattice distortion. For microstructure analysis using TEM, the defects and carbon concentration of the laser-carburized TiZrN coating increased as the carbon paste was thicker. It indicated that the variation of the carbon potential corresponds to the change in the paste thickness. In XPS depth profile analysis, high concentration of carbon and formation of carbide were observed in laser-carburized TiZrN coating with thick carbon paste. It revealed that the carbon concentration on the surface and carbon potential were changed by the thickness control of carbon paste. The compressive residual stress increased from 3.67 GPa to 4.58 GPa by the variation of carbon concentration.

Soil Profile Measurement of Carbon Contents using a Probe-type VIS-NIR Spectrophotometer (프로브형 가시광-근적외선 센서를 이용한 토양의 탄소량 측정)

  • Kweon, Gi-Young;Lund, Eric;Maxton, Chase;Drummond, Paul;Jensen, Kyle
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.382-389
    • /
    • 2009
  • An in-situ probe-based spectrophotometer has been developed. This system used two spectrometers to measure soil reflectance spectra from 450 nm to 2200 nm. It collects soil electrical conductivity (EC) and insertion force measurements in addition to the optical data. Six fields in Kansas were mapped with the VIS-NIR (visible-near infrared) probe module and sampled for calibration and validation. Results showed that VIS-NIR correlated well with carbon in all six fields, with RPD (the ratio of standard deviation to root mean square error of prediction) of 1.8 or better, RMSE of 0.14 to 0.22%, and $R^2$ of 0.69 to 0.89. From the investigation of carbon variability within the soil profile and by tillage practice, the 0-5 cm depth in a no-till field contained significantly higher levels of carbon than any other locations. Using the selected calibration model with the soil NIR probe data, a soil profile map of estimated carbon was produced, and it was found that estimated carbon values are highly correlated to the lab values. The array of sensors (VIS-NIR, electrical conductivity, insertion force) used in the probe allowed estimating bulk density, and three of the six fields were satisfactory. The VIS-NIR probe also showed the obtained spectra data were well correlated with nitrogen for all fields with RPD scores of 1.84 or better and coefficient of determination ($R^2$) of 0.7 or higher.

The Change in Diffusion Coefficient and Wear Characteristic in Carbonitriding Layer of SCM415 Steel (침탄질화 처리된 SCM415강의 깊이에 따른 확산 및 마모특성 변화)

  • Lee, Su-Yeon;Youn, Kuk-Tea;Huh, Seok-Hwan;Lee, Chan-Gyu
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.5
    • /
    • pp.207-212
    • /
    • 2011
  • In this study, the change in diffusion coefficient and wear characteristic with depth in the carbonitriding layer of SCM415 steel was discussed. To determine the diffusion coefficient, depth profile of carbon was measured from the surface using the Glow Discharge Spectrometer. In otherwise, measurements of carbide fraction, micro vickers hardness of surface and observation of microstructure have been implemented through the SEM image. $Fe_3$(C,N) layer and effective depth were increased as the time for carbonitriding takes longer. According to wear experiment, the results showed that wear resistance was improved by $Fe_3$(C,N) layer and effective depth.

Heavy Metal Speciation in Soils from the janghang Smelter Area (장항 제련소 지역 토양의 중금속 오염에 대한 환경광물학적 연구)

  • 여상진;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.139-147
    • /
    • 1997
  • The Janghang smelter is the first lead, zinc and copper smelting facility in Korea which was operated for a half century from 1936 to 1989. The clay minerals and their heavy metal association in the soil profile around the smelter have been studied using XRD, EPMA, SEM-EDS, TEM, EPR and sequential extraction techniques. The soils in A horizon are highly acidic showing pH 4.45. The pH is going up with increasing depth. They have residual water contents of 1.18-1.51 wt%, loss on ignition of 6.32-7.79 wt%, and carbon contents of 0.08-0.88 wt%. Soils consist of quartz, feldspar, muscovite, kaolinite, vermiculite, biotite, chlorite, goethite and hematite in the decreasing abundance. The contents of clay minerals, especially vermiculite and chlorite, decrease with increasing depth. Sequential extraction experiments for the profile samples show that heavy metals (Zn, Cu, Pb, Cd) are highly concentrated in the A horizon of the soil profile as water-extractable (mostly amorphous), MgCl2-extractable (exchangeable in clay minerals), and organic phases. The heavy metal contents decrease with increasing depth. It suggests that the heavy metals are mainly associate with clay minerlas in an exchangeable state. It is also noted that heavy metals are highly concentrated in the manganese and iron oxide phases.

  • PDF

Comparison of Organic Carbon Composition in Profile by Using Solid 13C CPNMR Spectroscopy in Volcanic Ash Soil

  • Sonn, Yeon Kyu;Kang, Seong Soo;Ha, Sang Keun;Kim, Yoo Hak;Lee, Chang Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.391-398
    • /
    • 2013
  • Soil organic carbon (SOC) has the potential to promote the soil quality for sustainability and mitigation of global warming. There is little information on organic carbon composition despite of having resistance of carbon degradation in soil. In this study, to understand the effect of volcanic ash on organic carbon composition and quantity in soil, we investigated characteristics of volcanic soil and compared organic carbon composition of soil and humic extract by using $^{13}C$-CPMAS-NMR spectra under soil profiles of Namweon series in Jeju. SOC contents of inner soil profiles were 134.8, 101.3, and 27.4 g C $kg^{-1}$ at the layer of depth 10-20, 70-80 and 90-100 cm, respectively. These layers were significantly different to soil pH, oxalate Al contents, and soil moisture contents. Alkyl C/O-alkyl C ratio in soil was higher than that of humic extracts, which was decreased below soil depth. Aromaticity of soil and humic extract was ranged from 29-38 and 24-32%, which was highest at the humic extract of 70-80 cm in soil depth. These results indicate that the changes of SOC in volcanic ash soil resulted from alteration of organic composition by pyrolysis and stability of organic carbon by allophane in volcanic ash soil.

Solid solubility of carbon in TiZrN coating by paste deposition methods for laser carburization (레이저 침탄에서 페이스트 증착방식에 따른 TiZrN 코팅의 carbon solid solubility)

  • Lee, Sungchul;Kim, Seonghoon;Kim, Jaeyoung;Kim, Bae-Yeon;Lee, Heesoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.1
    • /
    • pp.7-11
    • /
    • 2020
  • Carbon solubility on the paste deposition methods in the carbon-doped TiZrN coating was investigated in terms of lattice distortion and atomic concentration. After depositing the carbon paste by the dip coating, spin coating and screen printing, the laser was ablated to form the carbon gradient layer. Thickness and the concentration of doped carbon depended on the paste deposition method. Crystal structure analysis indicated that more lattice distortion occurred when coating layers were doped with spin coating and screen printing than when coating layers were doped with dip coating. The XPS depth profile showed that the thickness of carbon gradient layer by dip coating was about 30 nm, spin coating and screen printing are approximately 100 nm, formed more gradient layer. The hardness before laser carburization was about 30 GPa, and the hardness of 31 GPa with dip coating and 37 GPa with spin coating and screen printing. It was indicated that paste deposition methods for laser carburization contributed to lattice distortion and gradient layer.

Variation of Microbial Community Along Depth in Paddy and Upland Field (논과 밭 토양에서 토층간 미생물 군집의 차이)

  • Kim, Chan-Yong;Park, Kee-Choon;Yi, Young-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.2
    • /
    • pp.139-143
    • /
    • 2009
  • We examined the vertical distribution of specific microbial groups and the patterns of microbial community structure within the soil profile using phospholipid fatty acid (PLFA). Samples were collected from the soil surface down to 15 cm in depth from paddy and upland fields located in Daegu, Korea. The two fields have been fertilized with only chemical fertilizers N, P, K for 33 years. Principal component analysis of the PLFA signatures indicated that the composition of the soil microbial communities changed significantly with the cultivation practices and soil depth, suggesting that cultivation practices of paddy and upland fields had more significant influence on soil microbial community than the soil depth did. The soil microbial communities changed more drastically with soil depth in upland field than in paddy field, with making thicker soil surface in paddy field in terms of soil microbial community. The ratios of cyclopropyl/monoenoic precursors and total saturated/total monounsaturated fatty acids increased with soil depth, suggesting that the deeper soil horizons are more carbon-limited and anaerobic than surface soil. The community analysis using PLFAs as biomarkers revealed that Gram-positive bacteria and actinomycetes tended to increase in proportional abundance with increasing soil depth, while the abundance of Gram-negative bacteria and fungi were highest at the soil surface and substantially lower in the subsurface.

Development of High Performance Low Pressure Carburizing System (Batch type 가스침탄 열처리로 국산화개발)

  • Kim, Won-Bae;Dong, Sang-Keun;Jang, Byoung-Lok;Han, Hyoung-Ki;Kim, Han-Suck;Cho, Han-Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.5
    • /
    • pp.262-269
    • /
    • 2006
  • The development of eco-friendly low pressure carburizing system with high pressure gas quenching(LPC-GQ, 500kg/charge) led to new stage in the fundamental case-hardening treatments. This is due to its ability to provide tighter tolerances on the carburizing process with notable reductions in distortion of the carburized and hardened workpiece. This system is characteristics by high uniformity and reproducibility of heat treatment results, absence of an intergranular oxidation layer, carburizing of complex shapes, reduced cycle time, low operating costs, simplified production, eliminate post washing, and reduced grinding costs.

Heat treatment characteristics of medium carbon steel by CW Nd:YAG Laser (CW Nd:YAG 레이저를 이용한 중탄소강의 열처리특성)

  • Shin H.J.;Yoo Y.T.;Ahn D.G.;Im K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.438-443
    • /
    • 2005
  • Laser surface hardening is an effective technique used to improve the tribological properties and also to increase the service life of automobile components such as camshafts, crankshatfs, lorry brake drums and gears. High power CO2 lasers and Nd:YAG lasers are employed for localized hardening of materials and hence are of potential application in the automobile industries. The heat is conducted rapidly into the bulk of the specimen causing self-quenching to occur and the formation of martensitic structure. In this investigation, the microstructure features occurring in Nd:YAG laser hardening SM45C steel are discussed with the use of optical microscopic and scanning electron microscopic analysis. Moreover, This paper describes the optimism of the processing parameters for maximum hardened depth of SM45C steel specimens of 3mm thickness by using CW Nd:YAG laser. Travel speed was varied from 0.6m/min to 1.0m/min. The maximum hardness and case depth fo SM45C steel are 780Hv and 0.4mm by laser hardening.

  • PDF

A Study on XPS and XRR Characteristics of DLC films Deposited by FCVA Method (FCVA 방법으로 증착된 다이아몬드상 탄소 박막의 XPS 및 XRR 특성 연구)

  • 박창균;장석모;엄현석;서수형;박진석
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.3
    • /
    • pp.109-115
    • /
    • 2003
  • Diamond-like carbon (DLC) films are deposited at room temperature using a filtered cathodic vacuum arc (FCVA) technique. The influence of negative bias voltage (applied to the substrate from 0 to -250V) on the $sp^3$ hybridized carbon fraction is examined by Raman spectroscopy and x-ray photoelectron spectroscopy (XPS) for C 1s core peak. For the first time, depth profile of C 1s, Si 2p, and O 1s XPS peaks for the deposited DLC film are obtained. DLC film is modeled as a multilayered structure. composing of surface, bulk, and interface. In addition, the x-ray reflectivity (XRR) is proposed as a method for estimating the density, surface roughness, and thickness of each layer constituting the DLC film. The estimated thickness of DLC film is in good agreement with the result obtained from the transmission electron microscope (TEM) measurement.