• Title/Summary/Keyword: Carbon decreasing rate

Search Result 110, Processing Time 0.026 seconds

Effect of Earthworm Flour Supplemented Diet on the Liver Damage in CCl4-treated Rats (흰쥐에 있어서 간손상(肝損傷)에 미치는 토룡분(土龍粉) 첨가식이의 영향)

  • 윤종국;반재태;신중규
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.4 no.1
    • /
    • pp.105-112
    • /
    • 1994
  • To evaluate the role of dietary earthworm flour in liver injury by CCl4 treatment, the rats were fed 5% earthworm flour supplemented diet for 53 days and control rats were fed standard diet without earthworm supplementation. Liver damage was induced both in earthworm flour supplemented diet and control groups by two intraperitoneal injections of CCl4 at the level of 0.1$m\ell$/100g body weight(50% in olive oil) at intervals of 16 hours the increasing rate of lover weight/body weight(%) and serum levels of alanine aminotransferase activity to the control group were higher in CCl4-treated rats fed earthworm flour supplemented diet than those fed standard diet. The decreasing rate of hepatic microsomal aniline hydroxylase activity was also higher in rats fed earthworm supplemented rats by the CCl4 treatment, Hepatic glutathione S-transferase activity was sinificantly higher in rats fed earthworm supplemented diet than those fed standard diet. It is concluded that a dietary earthworm flour argument the metabolic rate of CCl in rats.

  • PDF

Batch and Flow-Through Column Studies for Cr(VI) Sorption to Activated Carbon Fiber

  • Lee, In;Park, Jeong-Ann;Kang, Jin-Kyu;Kim, Jae-Hyun;Son, Jeong-Woo;Yi, In-Geol;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.157-163
    • /
    • 2014
  • The adsorption of Cr(VI) from aqueous solutions to activated carbon fiber (ACF) was investigated using both batch and flow-through column experiments. The batch experiments (adsorbent dose, 10 g/L; initial Cr(VI) concentration, 5-500 mg/L) showed that the maximum adsorption capacity of Cr(VI) to ACF was determined to 20.54 mg/g. The adsorption of Cr(VI) to ACF was sensitive to solution pH, decreasing from 9.09 to 0.66 mg/g with increasing pH from 2.6 to 9.9; the adsorption capacity was the highest at the highly acidic solution pHs. Kinetic model analysis showed that the Elovich model was the most suitable for describing the kinetic data among three (pseudo-first-order, pseudo-second-order, and Elovich) models. From the nonlinear regression analysis, the Elovich model parameter values were determined to be ${\alpha}$ = 162.65 mg/g/h and ${\beta}$ = 2.10 g/mg. Equilibrium isotherm model analysis demonstrated that among three (Langmuir, Freundlich, Redlich-Peterson) models, both Freundlich and Redlich-Peterson models were suitable for describing the equilibrium data. In the model analysis, the Redlich-Peterson model fit was superimposed on the Freundlich fit. The Freundlich model parameter values were determined to be $K_F$ = 0.52 L/g and 1/n = 0.56. The flow-through column experiments showed that the adsorption capacities of ACF in the given experimental conditions (column length, 10 cm; inner diameter, 1.5 cm; flow rate, 0.5 and 1.0 mL/min; influent Cr(VI) concentration, 10 mg/L) were in the range of 2.35-4.20 mg/g. This study demonstrated that activated carbon fiber was effective for the removal of Cr(VI) from aqueous solutions.

Sintering Behavior of $B_4C-SiC$ Composite ($B_4C-SiC$ 복합체의 상압소결거동)

  • 김득중;강을손
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.739-744
    • /
    • 1994
  • The B4C-C system was investigated to gain an understanding of the sintering behaviors of B4C. In order to get sintered density of 97% TD, sintering temperature of 225$0^{\circ}C$ was necessary. Since such a high temperature operation is actually difficult on a commercial basis, our objective was to examine the possibility of decreasing the sintering temperature by adding SiC. The addition of SiC in B4C increases the sintering rate about at 210$0^{\circ}C$ and results in a fine microstructure with more than 98% relative density on 55 wt% B4C-40wt% SiC-5 wt% C composition. The probability of liquid phase sintering was investigated, but the evidences of liquid phase formation were not observed with XRD and TEM observation. It was proposed that the addition of SiC and carbon to B4C reduce interface energy during sintering, which results in enhanced grain-boundary diffusion. Thus, the enhanced grain-boundary diffusion and retarded grain growth by SiC improve densification.

  • PDF

Study on the Accumulative Distribution of Malation and itns Determination form the Human Tissue. (사체중 MaIathion의 각 장기조직별 분석 및 정량에 관한 연구)

  • 이완구;박성우
    • Journal of Environmental Health Sciences
    • /
    • v.5 no.1
    • /
    • pp.18-20
    • /
    • 1978
  • An experimental study was conducted to determine the quantity of contamination of organophosphrous pesticides accumulated in each human tissues. The samples used for this experiment were spleen, lung, heart, liver and kindney and those tissues were homogenized by a blender. The homogenized materials was extracted with mixed solvent, acetone/benzene (1:1) and cleaned up on a activated carbon column and determined by gas chromatography using AFID supported on 5% QF-1. The average recovery rate was 94% and the results obtained are summarized as follows. 1) The quantities of Malathin accumulated in each tissues were 0.53 ppm in spleen, 0.42 ppm in lung, 0.34 ppm in kidney, 0.19 ppm in heart and 0.19 ppm in liver. 2) Residues of pesticides in chronic or acute intoxicated tissues were highest in the spleen, decreasing in order of the lung, kidney, heart, and liver. 3) According to the above resuk we can conclude that the most proper material in detecting the pesticide is the spleen.

  • PDF

Neurospora의 생육시기에 따른 호흡능의 변화와 자외선 감수성과의 상관관계

  • 이영녹
    • Journal of Plant Biology
    • /
    • v.6 no.4
    • /
    • pp.1-4
    • /
    • 1963
  • Using conidia of Neurospora, changes in respiratory activities and the sensitivity to the ultraviolet light of the cells at different growing stages were measured by manometric methods, and the correlation between them was observed. Efficiency in the utilization of various carbon sources, such as, glucose, sucrose, maltose, starch and sodium acetate, in growth and exogenous respiration of N. crassa was also determined. Growth rate of N. crassa was decreased considerably in the medium containing sodium acetate than in the glucose medium and was almost zero in the lactose medium, whereas the utilization of sucrose, maltose and starch was ve교 high, as that of glucose. Respiratory activities of the cells veried considerably depending upon their different growing stages. Actively growing hyphae exhibited the greatest activity in exogenous glucose respiration, followed by germinating and activated conidia in decreasing order. There was no proportional relationship between the dose of ultraviolet light irradiated and its effect on the respiratory activity of the cells, though the more the dose of ultraviolet light, the more the injury. The sensitivity of the cells to ultraviolet light varied with the different respiratory activities of the cells linked to the developmental stages. In general, the more actively growing cells having high respiratory activities exhibited the more serious injury.

  • PDF

Effects of Foaming Temperature and Carbon black Content on the Cure Behaviors and Foaming Characteristics of the Natural Rubber Foams (발포온도와 카본블랙 함량이 천연고무 발포체의 가황거동 및 발포특성에 미치는 영향)

  • Choi, Kyo-Chang;Kim, Joon-Hyung;Yoon, Jin-Min;Kim, Soo-Yeon
    • Elastomers and Composites
    • /
    • v.41 no.3
    • /
    • pp.147-156
    • /
    • 2006
  • To investigate the influence of the foaming temperature and carbon black content on the cure behaviors and foaming characteristics of the foams. natural rubber (NR) was foamed at five temperature zones (145, 150, 155, 160 and $165^{\circ}C$) and different feeding ratios of the carbon black. A decreasing trend of the scorch time, $t_{s2}$ and cure time, $t_{90}$ was observed upon increasing foaming temperature and carbon black content. The optimal temperature for vulcanization and foaming of NRs in this study was considered to be $165^{\circ}C$ where density of the loomed NRs is lower than those at other four temperature regions. The rule rate index of the NRs foamed at $145^{\circ}C$ is smaller than those at 150, 155, 160 and $165^{\circ}C$. The results of the expansion ratio and micrographs of the foamed NRs were founded to support the density characteristics. The thickness of each of the struts formed inside the rubber matrix decreases with increasing the foaming temperature, while it increases with increasing the carbon black content.

Effects of Mineral Media, Carbon Sources and Phytohormones on Micropropagation of Alnus hirsuta (물오리나무(Alnus hirsuta)의 기내증식에 미치는 기본배지, 탄소원 및 식물호르몬의 영향)

  • 김경희
    • Journal of Plant Biology
    • /
    • v.35 no.2
    • /
    • pp.135-142
    • /
    • 1992
  • Shoot tip explants from germinated seeds of Alnus hirsuta were cultured on NT (Nagata and Takebe, 1971) mineral salts medium supplemented with 6% glucose, MS (Murashige and Skoog, 1962) vitamin mixture, polyvinylpyrrolidone (PVP) and $0-50\;\mu\textrm{M}$ 6-benzylaminopurine (BAP). Five $\mu\textrm{M}$ BAP was found to give the highest shoot multiplication rate. Accordingly about 200 shoots were obtained for further experiments by multiplying shoots on this medium for 4-5 months. Regardless of carbon sources, NT mineral medium produced 3-12 times of shoots than MS mineral medium did. On NT mineral medium, 3% sucrose, 3% glucose and 6% glucose yielded no significant differences. It was observed that media consisting of 1/4-1/2 strength NT mineral salts, 3% sucrose and $1-8\;\mu\textrm{M}$ IBA produced about 100% rooting rate. Almost 100% of the resulting plantlets survived after transfer to the soil by decreasing humidity stepwise.epwise.

  • PDF

Changes in CO2 Absorption Efficiency of NaOH Solution Trap with Temperature

  • Park, Se-In;Park, Hyun-Jin;Yang, Hye In;Choi, Woo-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.554-561
    • /
    • 2017
  • Under the projected global warming, release of carbon as $CO_2$ through soil organic matter decomposition is expected to increase. Therefore, accurate measurement of $CO_2$ released from soil is crucial in understanding the soil carbon dynamics under increased temperature conditions. Sodium hydroxide (NaOH) traps are frequently used in laboratory soil incubation studies to measure soil respiration rate, but decreasing $CO_2$ gas solubility with increasing temperature may render the reliability of the method questionable. In this study, the influences of increasing temperature on the $CO_2$ capture capacity of NaOH traps were evaluated under $5{\sim}35^{\circ}C$ temperature range at $10^{\circ}C$ interval. Two closed-chamber experiments were performed where NaOH traps were used to capture $CO_2$ either released from acidified $Na_2CO_3$ solution or directly injected into the chamber. The sorption of ambient $CO_2$ within the incubators into NaOH traps was also measured. The amount $CO_2$ captured increased as temperature increased within 2 days of incubation, suggesting that increased diffusion rate of $CO_2$ at higher temperatures led to increases in $CO_2$ captured by the NaOH traps. However, after 2 days, over 95% of $CO_2$ emitted in the emission-absorption experiment was captured regardless of temperature, demonstrating high $CO_2$ absorption efficiency of the NaOH traps. Thus, we conclude that the influence of decreased $CO_2$ solubility by increased temperatures is negligible on the $CO_2$ capture capacity of NaOH traps, supporting that the use of NaOH traps in the study of temperature effect on soil respiration is a valid method.

Degradation Efficiencies of Gas Phase Hydrocarbons for Photocatalysis Reactor With TiO2Thin Film (TiO2광촉매 반응기의 기체상 탄화수소의 분해효율)

  • 이진홍;박종숙;김진석;오상협;김동현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.3
    • /
    • pp.223-230
    • /
    • 2002
  • Titania photocatalytic oxidation reactors were studied to investigate degradation efficiencies of hydrocarbons. In general, it is well known phenomena that thin layered titania oxidizes most of hydrocarbons to carbon dioxide and water under UV light. In this study, degradation efficiencies were measured due to changes in reactor structures, UV sources, the number of titania coatings, and various hydrocarbon chemicals. It was proven that gas degradation efficiencies are related to such factors as UV transmittance of coating substance, collision area of surface, and gas flow rate. For packing type annular reactor, about 98% degradation efficiency was achieved for achieved for propylene of 500 ppm level at a flow rate of 100 ml/min. Several gases were also tested for double-coated titania thin film under the condition of continuous flow of 100 ml/min and 365 nm UV source. It was shown that degradation efficiencies were decreasing in the order: $C_3$ $H_{6}$, n-C$_4$ $H_{10}$, $C_2$ $H_4$, $C_2$ $H_2$, $C_{6}$ $H_{6}$ and $C_2$ $H_{6}$./. 6/./.

Performance Evaluation of Nano-Lubricants at Refrigeration Oil (나노입자를 적용한 냉장고 압축기용 오일의 윤활특성 평가)

  • Lee, Kwang-Ho;Hwang, Yu-Jin;Kwon, Lae-Un;Lee, Jae-Keun;Kim, Seok-Ro;Kim, Sun-Wook
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.184-188
    • /
    • 2008
  • It has been recognized that friction coefficient decreased with decreasing viscosity of oil in lubrication. In general, the more viscosity decreases, the more wear rate increases due to decrease load carrying capacity. It has been proposed that nano particles in oil decrease friction coefficient and wear rate. The purpose of this study is to apply oil of lower viscosity that mix with nano particles at the compressor used in a refrigerator to decrease friction coefficient keeping Load carrying capacity. Mineral oil of 8 cSt were used and mixed with nano particle. Friction coefficient was evaluated by a disk-on-disk tester. As a result, friction coefficient of nano oil decreased by 90% in comparison with raw oil. These results lead us to the conclusion that nano oil is new plan to raise efficiency of the compressor.

  • PDF