• Title/Summary/Keyword: Carbon certification

Search Result 102, Processing Time 0.023 seconds

Blue Carbon Resources in the East Sea of Korea and Their Values and Potential Applications (동해안 블루카본 자원의 가치와 활용방안)

  • Yoon, Ho-Sung;Do, Jeong-Mi;Jeon, Byung Hee;Yeo, Hee-Tae;Jang, Hyeong Seok;Yang, Hee Wook;Suh, Ho Seong;Hong, Ji Won
    • Journal of Life Science
    • /
    • v.32 no.7
    • /
    • pp.578-587
    • /
    • 2022
  • Korea, as the world's 7th largest emitter of greenhouse gases, has raised the national greenhouse gas reduction target as international regulations have been strengthened. As it is possible to utilize coastal and marine ecosystems as important nature-based solutions (NbS) for implementing climate change mitigation or adaptation plans, the blue carbon ecosystem is now receiving attention. Blue carbon refers to carbon that is deposited and stored for a long period after carbon dioxide (CO2) is absorbed as biomass by coastal ecosystems or oceanic ecosystems through photosynthesis. Currently, there are only three blue carbon ecosystems officially recognized by the Intergovernmental Panel on Climate Change (IPCC): mangroves, salt marshes, and seagrasses. However, the results of new research on the high CO2 sequestration and storage capacity of various new blue carbon sinks, such as seaweeds, microalgae, coral reefs, and non-vegetated tidal flats, have been continuously reported to the academic community recently. The possibility of IPCC international accreditation is gradually increasing through scientific verification related to calculations. In this review, the current status and potential value of seaweeds, seagrass fields, and non-vegetated tidal flats, which are sources of blue carbon on the east coast, are discussed. This paper confirms that seaweed resources are the most effective NbS in the East Sea of Korea. In addition, we would like to suggest the direction of research and development (R&D) and utilization so that new blue carbon sinks can obtain international IPCC certification in the near future.

Development of 'Carbon Footprint' Concept and Its Utilization Prospects in the Agricultural and Forestry Sector ('탄소발자국' 개념의 발전 과정과 농림 부문에서의 활용 전망)

  • Choi, Sung-Won;Kim, Hakyoung;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.4
    • /
    • pp.358-383
    • /
    • 2015
  • The concept of 'carbon footprint' has been developed as a means of quantifying the specific emissions of the greenhouse gases (GHGs) that cause global warming. Although there are still neither clear definitions of the term nor rules for units or the scope of its estimation, it is broadly accepted that the carbon footprint is the total amount of GHGs, expressed as $CO_2$ equivalents, emitted into the atmosphere directly or indirectly at all processes of the production by an individual or organization. According to the ISO/TS 14067, the carbon footprint of a product is calculated by multiplying the units of activity of processes that emit GHGs by emission factor of the processes, and by summing them up. Based on this, 'carbon labelling' system has been implemented in various ways over the world to provide consumers the opportunities of comparison and choice, and to encourage voluntary activities of producers to reduce GHG emissions. In the agricultural sector, as a judgment basis to help purchaser with ethical consumption, 'low-carbon agricultural and livestock products certification' system is expected to have more utilization value. In this process, the 'cradle to gate' approach (which excludes stages for usage and disposal) is mainly used to set the boundaries of the life cycle assessment for agricultural products. The estimation of carbon footprint for the entire agricultural and forestry sector should take both removals and emissions into account in the "National Greenhouse Gas Inventory Report". The carbon accumulation in the biomass of perennial trees in cropland should be considered also to reduce the total GHG emissions. In order to accomplish this, tower-based flux measurements can be used, which provide a direct quantification of $CO_2$ exchange during the entire life cycle. Carbon footprint information can be combined with other indicators to develop more holistic assessment indicators for sustainable agricultural and forestry ecosystems.

Climate Change Policy and Carbon Trading Scheme and in Japan: Features and Lessons (일본의 기후변화 정책과 배출권거래제도: 특징과 시사점)

  • Lee, Soo-Cheol
    • Journal of Environmental Policy
    • /
    • v.9 no.4
    • /
    • pp.77-102
    • /
    • 2010
  • The purpose of this paper is to analyze the Japanese emission trading system and climate change policy thereby contributing to the instituting of similar systems that will be viable for the Korean context. In applying such analyses, it is important to include a careful consideration of cost sharing between stakeholders and firms, an enhancement of the trust worthiness of data concerning greenhouse gases, and an examination of related infrastructure such as emissions authentication agencies and their development. Moreover, it is important to minimize the outflow of domestic resources such as offset credit, green electricity certification system, and ecopoint, making compatible economic growth and carbon reduction thereby encouraging the production and dissemination of 'Environmental Value' as well as connecting 'Environmental Value' to a emission trading system.

  • PDF

LCA (Life Cycle Assessment) for Evaluating Carbon Emission from Conventional Rice Cultivation System: Comparison of Top-down and Bottom-up Methodology (관행농 쌀 생산체계의 탄소배출량 평가를 위한 전과정평가: top-down 방식의 국가평균값과 bottom-up 방식의 사례분석값 비교)

  • Ryu, Jong-Hee;Jung, Soon Chul;Kim, Gun-Yeob;Lee, Jong-Sik;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1143-1152
    • /
    • 2012
  • We established a top-down methodology to estimate carbon footprint as national mean value (reference) with the statistical data on agri-livestock incomes in 2007. We also established LCI (life cycle inventory) DB by a bottom-up methodology with the data obtained from interview with farmers from 4 large-scale farms at Gunsan, Jeollabuk-do province to estimate carbon footprint in 2011. This study was carried out to compare top-down methodology and bottom-up methodology in performing LCA (life cycle assessment) to analyze the difference in GHGs (greenhouse gases) emission and carbon footprint under conventional rice cultivation system. Results of LCI analysis showed that most of $CO_2$ was emitted during fertilizer production and rice cultivation, whereas $CH_4$ and $N_2O$ were mostly emitted during rice cultivation. The carbon footprints on conventional rice production system were 2.39E+00 kg $CO_2$-eq. $kg^{-1}$ by top-down methodology, whereas 1.04E+00 kg $CO_2$-eq. $kg^{-1}$ by bottom-up methodology. The amount of agro-materials input during the entire rice cultivation for the two methodologies was similar. The amount of agro-materials input for the bottom-up methodology was sometimes greater than that for top-down methodology. While carbon footprint by the bottom-up methodology was smaller than that by the top-down methodology due to higher yield per cropping season by the bottom-up methodology. Under the conventional rice production system, fertilizer production showed the highest contribution to the environmental impacts on most categories except GWP (global warming potential) category. Rice cultivation was the highest contribution to the environmental impacts on GWP category under the conventional rice production system. The main factors of carbon footprints under the conventional rice production system were $CH_4$ emission from rice paddy field, the amount of fertilizer input and rice yield. Results of this study will be used for establishing baseline data for estimating carbon footprint from 'low carbon certification pilot project' as well as for developing farming methods of reducing $CO_2$ emission from rice paddy fields.

Economic Feasibility of Energy Storage System connected with Solar /Wind Power Generation (태양광/풍력 연계 기반의 ESS 경제성 분석)

  • Lee, Yong Bong;Kim, Jeong Ho
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.74-81
    • /
    • 2015
  • Currently, the government is encouraging the introduction of energy storage system to reduce carbon emissions and peak power demand. The government is planning the cumulative capacity of ESS of 2GW in 2020. By utilizing charge and discharge of the ESS, it is possible to sell the surplus power to utility and electricity market. This paper suggests the model that economic feasibility of energy storage system for planning the construction of power generation facilities in 2035. Our results of simulation indicate the energy storage plan of utility for constructing renewable energy facilities is need to incentives from the government to encourage power utilities and expansion of ESS.

Advanced Methodology of Composite Materials Qualification for Small Aircraft (소형항공기용 복합재료 인증시험)

  • Lee, Ho-Sung;Min, Kyung-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.446-451
    • /
    • 2007
  • Since the introduction of advanced composite materials for use in aircraft, the material qualification has been a costly burden to the small airframe manufacturer. For each manufacturer, extensive qualification testing has often been performed to develop the base material properties and allowables at operating environmental conditions, regardless of whether this material system had been previously certificated by other manufacturers. In recent years, NASA, industry, and the FAA have worked together to develop a cost-effective method of qualifying composite material systems by the sharing of a central material qualification database. In this paper, the new methodology of composite material qualification is presented and material allowable of 350°F carbon fiber/epoxy composite material produced domestically is determined with this methodology.

Development of a Cantilevered Patient Table Considering X-ray Transparency (X-선 투과특성을 고려한 외주형 수술용 테이블 개발)

  • Won B.H.;Chun K.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.189-190
    • /
    • 2006
  • A patient table considering x-ray transparency, mechanical safety and compact multi-axis moving mechanism has been developed. The goal of medical imaging technology is to keep radiation exposure of patients during x-raying to a minimum. In order to obtain clear pictures at low dose, however, the x-ray table which supports the patient must be sufficiently permeable to radiation to allow good image resolution. The table top is made of low density foam for x-ray transparent effective area and structural aluminum plate to connect moving mechanism under the table, covered with thin carbon fiber. This sandwich construction is very rigid and lightweight, so the table top can handle relatively heavy load comparing to its cantilevered structure which is unavoidable as long as cooperate with C-arm radiography. To verify the design results finite element static analysis and experimental tests have been done. According to the verification the results well satisfy certification guide lines as a medical device.

  • PDF

Understanding of Audit Results from Demonstration Companies toward Green Management System Certificate (녹색경영시스템 시범인증기업 심사 자료의 이해)

  • Park, Dong-Joon;Kang, Byung-Hwan;Kim, Ho-Gyun
    • Korean Management Science Review
    • /
    • v.30 no.2
    • /
    • pp.107-116
    • /
    • 2013
  • Climate changes and environmental pollution recently became a matter of global interest. Korean government established low carbon green growth act in the light of international environment regulation and started demonstration certificate project for GMS (Green Management System). We aim to explore audit data resulted from demonstration companies that pursued the GMS certificate. The demonstration companies are consisted of 11 companies that a certification body L gave the certificate. The audit data results were formed by minor nonconformities detected in the field evaluation based on GMS standards, KS I 7001/2 : 2011. We found out significant differences for minor nonconformities between types of industry and between major clauses of Part 1 and Part 2 in GMS standards. We make an effort to figure out the implication of causes of the significant differences. These results are expected to contribute to understand GMS operation situations and are utilized as a reference for energy management, social responsibility, and green gas reduction.

Development of an Arc Detector Assessment System by Loss of Contact Between Pantograph and Contact Wire in Electric Railway (전기철도 팬터그래프-전차선간 이선아크 검측 평가 기술 개발)

  • Park, Young;Cho, Yong-Hyeon;Kwon, Sam-Young;Lee, Ki-Won;You, Won-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2171-2175
    • /
    • 2011
  • The objective of this paper is to discuss technologies on assessing reliability of arc detectors by composing a system that generates and simulates occurrence of arc caused by loss of contact between pantographs and contact wires in a laboratory condition. In order to establish the arc simulator, a device that generates light having the bandwidth of arcs that occur between carbon-metal. The simulator was designed under conditions of EN 50317 and simulations were conducted using the developed device. According to the results, it was possible to conduct certification tests following regulations of international standards and the precision of the simulator was satisfactory. The proposed arc detector assessment system is expected to enhance precision of current collection quality performance assessment methods at high-speed lines and conventional lines while being referred as fundamental technologies for development of detectors suiting international conditions.

Safety risk management of ammonia to scale-up hydrogen production for transport and storage (수송/저장용 수소 생산 확대를 위한 암모니아의 안전 위험 관리 표준 동향)

  • HyungKuk Ju;Hyeokjoo Lee;Chang Hyun Lee;Sungyool Bong
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.371-379
    • /
    • 2023
  • Ammonia, which is closely related to our lives, has a significant impact on our lives as a representative substance for crop cultivation. Recently, it has gained attention as an efficient and productive hydrogen/storing substance that can replace fossil fuels. Efforts are being made to utilize it as a renewable energy source through thermochemical and electrochemical reactions. However, the use of ammonia, which encompasses the era, carries inherent toxicity, so a comprehensive understanding of ammonia safety is necessary. To ensure safety in the transportation and storage of ammonia and chemical substances domestically and internationally, national and organizational standards are being developed and provided through documents and simple symbols to help people understand. This review explores the chemical characteristics of ammonia, its impact on human health, and the global trends in safety standards related to ammonia. Through this examination, the paper aims to contribute to the discourse on the safety and risk management of ammonia transport and storage, crucial for achieving carbon neutrality and expanding the hydrogen economy.