• 제목/요약/키워드: Carbon ceramic composite

검색결과 151건 처리시간 0.025초

가지 달린 구조의 폴리실라잔을 전구체로 이용해 제조한 카본 나노튜브/실리콘 카보나이트라이드 복합체 시트의 발열특성에 관한 연구 (A Study on Heating Element Properties of Carbon Nanotube/Silicon Carbonitride Composite Sheet using Branched Structured Polysilazane as Precursor)

  • 허태환;송현준;정영진;곽영제
    • Composites Research
    • /
    • 제33권6호
    • /
    • pp.395-400
    • /
    • 2020
  • 본 연구에서는 카본나노튜브(CNT) 면상발열체에 preceramic polymer 중 하나인 실세스퀴아잔을 코팅하여 고온에서 안정적인 발열이 가능한 CNT/SiCN 복합체 시트를 제조하였다. 제조된 복합체 필름은 FE-SEM을 통해 실세스퀴아잔이 CNT 면상발열체의 표면을 모두 코팅한 것을 확인하였다. 또한 800℃의 열처리를 통해 실세 스퀴아잔이 SiCN 세라믹으로 전환되어도 표면의 결함이 발견되지 않고 온전한 구조를 유지하는 것을 확인하였다. CNT/SiCN 복합체 시트는 질소와 공기 분위기 모두에서 기존의 CNT 시트보다도 높은 열적 안정성을 확보할 수 있었다. 마지막으로 제조된 CNT/SiCN 복합체 필름은 대기 중에서 700℃ 이상의 온도로 발열이 가능하였고 발열 후 온도를 식히고 재발열 또한 성공적으로 이루어졌다.

고급차의 제동 신뢰성 향상을 위한 카본 세라믹 복합재의 제동 특성 제어 및 향후 기술 진화 트랜드 예측에 관한 연구 (A Study on Braking Characteristics Control of Carbon Ceramic Composite for Brake Reliability Improvement of Luxury Car and Future Technology Evolution Trend Prediction)

  • 심재훈;전갑배;이중희;박병준;임동원;현은재;정광기;김기정;김홍기
    • 한국자동차공학회논문집
    • /
    • 제24권6호
    • /
    • pp.684-693
    • /
    • 2016
  • The luxury car industry has grown 10.5 % every year from 2010 to 2014. For this reason, it is very important for automotive companies to improve profitability and brand value. High-performance brake systems have become an absolute necessity because of the increase in engine power and customer preference among other factors. Also, competing automotive companies actively reinforce domestic production in order to maintain quality and infrastructure for luxury cars. In this regard, we demonstrated new carbon ceramic brakes to improve brake reliability for luxury cars and to improve the competitiveness of automotive companies. Finally, we propose the next-generation braking technology by predicting technological evolution trends.

가압연소소결(HPCS)법에 의한 TiC-Cr$_3$C$_2$ 복합체의 제조 (Preparation of Sintered TiC-Cr$_3$C$_2$ Composite by HPCS(High Pressure-Self Combustion Sintering) Method)

  • 오장환;조원승;최상욱;최장민
    • 한국세라믹학회지
    • /
    • 제35권3호
    • /
    • pp.231-238
    • /
    • 1998
  • Cr3C2 -dispersed TiC composites were prepared via HPCS(high pressure-self combustion sintering) pro-cess using mixtures of Ti, Cr and a carbon source for the purpose of increasing the facture toughness and sinterability of TiC. In this study the microstructure and properties of the composites were investigated in terms of relation to the carbon source the particle size of Ti and the amount of Cr. It was found that car-bon black was the most effective carbon source among the various carbon sources tested and the reaction was more effective as the particle size of Ti decreased. Among the sintered composites of Ti-C-Cr system the one with 30wt% Cr showed the best physical properties with 0.5% in apparent porosity 98.8% in re-lative density 18.2 GPa in hardness and 4.46 MPa.m1/2 in fracture toughness. In addition it was observed that the lattice constant of TiC decreased gradually with increasing the amount of Cr.

  • PDF

VARTM 공정을 이용한 유리/탄소섬유 하이브리드 복합체의 특성 (Characteristics of Glass/Carbon Fiber Hybrid Composite Using by VARTM)

  • 한인섭;김세영;우상국;홍기석;서두원
    • 한국세라믹학회지
    • /
    • 제43권10호
    • /
    • pp.607-612
    • /
    • 2006
  • In VARTM (Vacuum Assisted Resin Transfer Molding) process, the permeability generally controls the filling time of the resin and it also affects the void characteristics of the fiber composite. In this study, carbon and glass fiber inter-layered hybrid composites (carbon fiber centered stack) with an epoxy matrix were fabricated by VARTM process and evaluated the resin flow and macro void characteristics. The permeability of glass fiber was higher than that of carbon fiber used in this study. Using Darcy's equation, the permeability of hybrid composites could be predicted and experimentally confirmed. After curing, the macro void content of hybrid composites was investigated using image analyzer. The calculated filling time was well agreed with experimental result and the void content was significantly changed in hybrid composites.

탄소섬유 배열이 LSI Cf-Si-SiC 복합체의 특성에 미치는 영향 (Effects of Carbon Fiber Arrangement on Properties of LSI Cf-Si-SiC Composites)

  • 지영화;한인섭;김세영;서두원;홍기석;우상국
    • 한국세라믹학회지
    • /
    • 제45권9호
    • /
    • pp.561-566
    • /
    • 2008
  • Carbon fiber fabric-silicon carbide composites were fabricated by liquid silicon infiltration (LSI) process. The porous two-dimensional carbon fiber fabric performs were prepared by 13 plies of 2D-plain-weave fabric in a three laminating method, [0/90], [${\pm}45$], [$0/90/{\pm}45$] lay-up, respectively. Before laminating, a thin pyrolytic carbon (PyC) layer deposited on the surface of 2D-plain weave fabric sheets as interfacial layer with $C_3H_8$ and $N_2$ gas at $900^{\circ}C$. A densification of the preforms for $C_f-Si-SiC$ matrix composite was achieved according to the LSI process at $1650^{\circ}C$ for 30 min. in vacuum atmosphere. The bending strength of the each composite were measured and the microstructural consideration was performed by a FE-SEM.

서로 다른 밀도를 갖는 탄소섬유강화 탄화규소 복합재료의 압흔응력에 의한 기계적 거동 (Mechanical Behavior of Indentation Stress in Carbon Fiber Reinforced Silicon Carbide Composites with Different Densities)

  • 이기성;김일겸;김태우;김세영;한인섭;우상국
    • 한국세라믹학회지
    • /
    • 제48권4호
    • /
    • pp.288-292
    • /
    • 2011
  • In this study, we investigated the mechanical behavior of carbon fiber reinforced silicon carbide composites by indentation stress. Relatively porous and dense fiber reinforced ceramic composites were fabricated by liquid silicon infiltration (LSI) process. Densification of fiber composite was controlled by hardening temperature of preform and consecutive LSI process. Load-displacement curves were obtained during indentation of WC sphere on the carbon fiber reinforced silicon carbide composites. The indentation damages at various loads were observed, and the elastic modulus were predicted from unloading curve of load-displacement curve.

SHS 화학로에 의한 (B.Si)C 복합체의 합성 및 기계적 특성에 관한 연구 (Study on Synthesis and Mechanical Properties of (B.Si)C Composite by Self Propagating High Temperature Synthesis Chemical Furnace)

  • 이형복;조덕호;이재원
    • 한국세라믹학회지
    • /
    • 제32권4호
    • /
    • pp.413-418
    • /
    • 1995
  • The (B.Si)C composite was prepared form the mixture of metal boron, silicon, and carbon powders in Ar atmosphere by Self-propagating High-temperature Synthesis Chemical Furnace. The characterization of synthesized power and sintered body were investigated. The microstructure of sintered body suggested that SiC boundary was made between B4C grains. The most excellent mechanical properties, the relative density of 95% oftheoretical value, 3 point flexural strength of 360MPa, and fracture toughness of 3.6MN/m3/2 could be obtained in 80wt% B4C-20 wt% SiC composite were obtained.

  • PDF

알콕사이드로부터 Sialon-SiC계 복합분말의 합성과 분말특성(I) (Synthesis ofSialon-SiC Composite Powder from Alkoxides and the Powder Properties(I))

  • 전명철;이홍림
    • 한국세라믹학회지
    • /
    • 제27권2호
    • /
    • pp.265-273
    • /
    • 1990
  • Fine Si-Al-OH-C coprecipitate powders were prepared from Si(OC2H5)4, Al(i-OC3H7)3, and carbon black by a hydrolysis method before fabrication of Sialon-SiC composite powder by carbothermal reduction at 1350$^{\circ}C$ for 10h under N2/H2 mixed atmosphere. The characterization of the synthesized Sialon-SiC composite powders was performed using XRD, BET, SEM, TEM and particle size analysis methods. The average particle size and specific surface area of the synthesized Sialon-SiC composite powder were 0.13$\mu\textrm{m}$ and 20.1㎡/g, respectively when Z=1 and N2 : H2=50 : 50.

  • PDF

탄소-탄소 복합재의 내삭마 내산화 코팅을 위한 초고온 세라믹스의 적용 (Application of ultra-high-temperature ceramics to oxidation-resistant and anti-ablation coatings for carbon-carbon composite)

  • 김현미;최성철;조남춘;이형익;최균
    • 한국결정성장학회지
    • /
    • 제29권6호
    • /
    • pp.283-293
    • /
    • 2019
  • 우주공간, 고에너지 플라즈마, 방사선 조사 환경과 같은 극한환경에서의 응용 분야가 증가함에 따라 더 높은 용융점 및 기계적 강도, 열전도도의 향상을 필요로 하는 재료에 대한 수요가 계속적으로 증가하고 있다. 이에 따라 대표적인 내열 소재인 탄소-탄소 복합체의 내산화/내삭마 특성을 개선하기 위하여 초고온 세라믹스를 이용하는 방법에 대하여 리뷰하였다. 초고온 세라믹스를 합성하는 가장 간단한 방법인 CVD 코팅법과 다른 코팅법인 pack cementation, 용사법의 장단점을 서로 비교하였다. 복잡한 형상의 C/C 복합체에 CVD 코팅법을 적용하기 위한 방법으로 열역학 계산 및 CFD 시뮬레이션의 활용 가능성을 제안하였다. 또한 이런 방법을 통하여 제작한 TaC/SiC 이중 층 코팅과 TaC/SiC 다중 층 코팅의 내산화 특성을 비교한 결과, 다중 층 코팅을 적용하였을 때 더 뛰어난 내산화성을 보이는 것을 확인하였다.

고압 자전연소 소결법을 이용한 섬유강화 복합체의 제조 (Fabrication of Fiber-Reinforced Composites by High Pressure Self-Combustion Sintering Method)

  • 방환철;고철호;임동원;김봉섭;최태현;윤존도
    • 한국세라믹학회지
    • /
    • 제37권5호
    • /
    • pp.444-452
    • /
    • 2000
  • Dense composites of titanium matrix and Al2O3 matrix with reinforcements of carbon or titanium carbide fibers were successfully fabricated by high-pressure self-combustion sintering method or combustion reacton under 30 MPa of uniaxial pressure with an aid of external heating in vaccum. It was found that the fibers were uniformly distributed in the matrix, and aligned in a phase perpendicular to the pressure axis. As a moel ratio of Ti/C or reaction time increased, the density of Ti-matrix composite increased Micro pores around fibers could be removed by using clean carbon fibers without sizing agent on their surface. The evolution of carbide fibers from carbon fibers was observed. The composition of the various phases around fibers were analyzed.

  • PDF