• Title/Summary/Keyword: Carbon catalysts

Search Result 573, Processing Time 0.027 seconds

Review on Application Progress of Carbon-Based Catalysts in Environmental Governance

  • Zheng, Xizhe;Huang, Yuming;Du, Changming
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.4
    • /
    • pp.269-277
    • /
    • 2022
  • In recent years, carbon-based catalysts have become a research hotspot in environmental governance applications. Carbon-based catalysts have large surface areas, porous structures, multi-surface functional groups and excellent electron transfer capabilities, and can synergistically exhibit adsorption and catalytic performance. This article reviews the research progress of carbon-based catalysts in environmental governance, mainly including its application in wastewater treatment, exhaust gas purification and soil remediation. In view of the current difficulties in the research of carbon-based catalysts, the development prospects are proposed. We hope that this review will provide convenience for new entrants and researchers intending to employ carbon-based catalysts for the remediation of contaminated environment.

Preparation and Electroactivities of Carbon Nanotubes-supported Metal Catalyst Electrodes Prepared by a Potential Cycling

  • Kim, Seok;Jung, Yong-Ju;Park, Soo-Jin
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.213-216
    • /
    • 2009
  • The electrochemical deposition of Pt nanoparticles on carbon nanotubes (CNTs) supports and their catalytic activities for methanol electro-oxidation were investigated. Pt catalysts of 4~12 nm average crystalline size were grown on supports by potential cycling methods. Electro-plating of 12 min time by potential cycling method was sufficient to obtain small crystalline size 4.5 nm particles, showing a good electrochemical activity. The catalysts' loading contents were enhanced by increasing the deposition time. The crystalline sizes and morphology of the Pt/support catalysts were evaluated using X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The electrochemical behaviors of the Pt/support catalysts were investigated according to their characteristic current-potential curves in a methanol solution. In the result, the electrochemical activity increased with increased plating time, reaching the maximum at 12 min, and then decreased. The enhanced electroactivity for catalysts was correlated to the crystalline size and dispersion state of the catalysts.

Synthesis and Characterization of Carbon nanofibers on Co and Cu Catalysts by Chemical Vapor Deposition

  • Park, Eun-Sil;Kim, Jong-Won;Lee, Chang-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1687-1691
    • /
    • 2014
  • This study reports on the synthesis of carbon nanofibers via chemical vapor deposition using Co and Cu as catalysts. In order to investigate the suitability of their catalytic activity for the growth of nanofibers, we prepared catalysts for the synthesis of carbon nanofibers with Cobalt nitrate and Copper nitrate, and found the optimum concentration of each respective catalyst. Then we made them react with Aluminum nitrate and Ammonium Molybdate to form precipitates. The precipitates were dried at a temperature of $110^{\circ}C$ in order to be prepared into catalyst powder. The catalyst was sparsely and thinly spread on a quartz tube boat to grow carbon nanofibers via thermal chemical vapor deposition. The characteristics of the synthesized carbon nanofibers were analyzed through SEM, EDS, XRD, Raman, XPS, and TG/DTA, and the specific surface area was measured via BET. Consequently, the characteristics of the synthesized carbon nanofibers were greatly influenced by the concentration ratio of metal catalysts. In particular, uniform carbon nanofibers of 27 nm in diameter grew when the concentration ratio of Co and Cu was 6:4 at $700^{\circ}C$ of calcination temperature; carbon nanofibers synthesized under such conditions showed the best crystallizability, compared to carbon nanofibers synthesized with metal catalysts under different concentration ratios, and revealed 1.26 high amorphicity as well as $292m^2g^{-1}$ high specific surface area.

Synthesis of CuO-Magnetite and ZnO-Magnetite catalysts for $CO_2$ Decomposed Reaction (CO$_2$ 분해용 촉매 CuO-Magnetite 및 ZnO-Magnenetite 합성)

  • Yang, Chun-Mo;Rim, Byung-O
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.67-75
    • /
    • 1998
  • The Cuo-Magnetite and ZnO-Magnetite catalysts with various of Cuo and ZnO mole% for Carbon Dioxide decomposed reaction synthesized. The catalysts were reduced by $H_2$ at $350^{\circ}C$ for 3 hours. The temperature was obtained by TGA and DSC experiments. The structures of catalysts were confirmed by X-ray diffraction experiment. The surface area of catalysts is $15{\sim}27\;m^2/g$. The results of Carbon Dioxide decomposed ability was better $H_2-reduced$ magnetite catalysts with 0.03 mole% CuO and 0.03 mole% ZnO than others catalysts. After Carbon Dioxide decomposed reaction, catalysts were reacted $H_2$ and created only methane.

Effect of O2 Plasma Treatments of Carbon Supports on Pt-Ru Electrocatalysts

  • Park, Soo-Jin;Park, Jeong-Min;Seo, Min-Kang
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.331-334
    • /
    • 2010
  • In the present study, carbon supports mixed with purified multi-walled carbon nanotubes (MWNTs) and carbon blacks (CBs) were used to improve the cell performance of direct methanol fuel cells (DMFCs). Additionally, the effect of $O_2$ plasma treatment on CBs/MWNTs supports was investigated for different plasma RF powers of 100, 200, and 300 W. The surface and structural properties of the CBs/MWNTs supports were characterized by FT-IR, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and inductive coupled plasma-mass spectrometer (ICP-MS). The electrocatalytic activity of PtRu/CBs/MWNTs catalysts was investigated by cyclic voltammetry measurement. In the experimental results, the oxygen functional groups of the supports were increased with increasing plasma RF power, while the average Pt particle size was decreased owing to the improvement of dispersibility of the catalysts. The electrochemical activity of the catalysts for methanol oxidation was gradually improved by the larger available active surface area, itself due to the introduction of oxygen functional groups. Consequently, it was found that $O_2$ plasma treatments could influence the surface properties of the carbon supports, resulting in enhanced electrocatalytic activity of the catalysts for DMFCs.

A Study of Carbon Monoxide Oxidation on Pt & Pt-Pd Catalysts (귀금속촉매 (Pt, Pd)를 이용한 일산화탄소 산화반응에 관한 연구)

  • 金京林
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.1 no.1
    • /
    • pp.43-51
    • /
    • 1985
  • This study is concerned with the oxidation of carbon monoxide on platinum and platinum-palladium catalysts. Catalysts were made by the impregnation method and flow reactor was used in the catalytic reaction. As for the mixed gases, carbon monoxide concentration varied from 1 to 4% and that of oxygen from 1 to 4%. $N_2$ was used as carrier gas and GHSV varied from 24, 000 $h^{-1} to 60, h^{-1}$. The temperature range was from 200 to $600^\circ$C. It was also taken into consideration that the heat and mass transfer resistance of our catalysts was negligible in the study. Experimental results showed that platinum-palladium catalyst was about 1.5-3.9% superior to platinum catalyst in conversion yield. When we used platinum-palladium catalyst, we observed that carbon monoxide oxidation was found to be 1 st order with respect to carbon monoxide concentration. Activation energy of the catalyst was 23.5 kcal/mol.

  • PDF

Synthesis of aligned and length-controlled carbon nanotubes by chemical vapor deposition

  • Park, Young Soo;Moon, Hyung Suk;Huh, Mongyoung;Kim, Byung-Joo;Kuk, Yun Su;Kang, Sin Jae;Lee, Seong Hee;An, Kay Hyeok
    • Carbon letters
    • /
    • v.14 no.2
    • /
    • pp.99-104
    • /
    • 2013
  • We investigated the effects of parametric synthesis conditions of catalysts such as sintering temperature, sorts of supports and compositions of catalysts on alignment and length-control of carbon nanotubes (CNTs) using catalyst powders. To obtain aligned CNTs, several parameters were changed such as amount of citric acid, calcination temperature of catalysts, and the sorts of supports using the combustion method as well as to prepare catalyst. CNTs with different lengths were synthesized as portions of molybdenum and iron using a chemical vapor deposition reactor. In this work, the mechanisms of alignment of CNTs and of the length-control of CNTs are discussed.

Carbon Materials as Catalysts

  • Lim, Seong-Yop;Jung, Doo-Hwan;Yoon, Seong-Ho;Mochida, Isao
    • Carbon letters
    • /
    • v.9 no.1
    • /
    • pp.47-60
    • /
    • 2008
  • Understanding the exact structure and surface characteristics of carbon materials is very important for design, synthesis, and utilization of the best carbon form with particular functions and high performance for practical applications such as selective adsorption adsorbents, energy storage materials, catalysts or catalyst supports, etc. This review paper focuses on carbon surface properties and the interaction between gaseous or liquid substances and carbon surface. Catalytic functions of carbon materials are reviewed including recent progress in synthesis and applications of nano-carbons.

Metallocene Catalysts on Carbon-based Nano-materials

  • Choi, Baek-Hap;Lee, Jun-O;Lee, Seung-Jun;Ko, Jae-Hyeon;Lee, Kyoung-Seok;Oh, Jung-Hoon;Kim, Yong-Hyun;Choi, In-Sung S.;Park, Sung-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.556-556
    • /
    • 2012
  • Transition metal-based organometallic complexes have shown great talents as a catalyst in various reactions. Designing organic molecules and coordinating them to such active centers have been a promising route to control the catalytic natures. Metallocene, which has transition metal atoms sandwiched by aromatic rings, is one of the representative systems for organometallic catalysts. Group 4-based metallocene catalysts have been most commonly used for the production of polyolefins, which have great world-wide markets in the real life. Graphenes and carbon nanotubes (CNTs) were composed of extended $sp^2$ carbon networks, showing high electron mobility as well as have extremely large steric bulkiness relative to metal centers. We were inspired by these characteristics of such carbon-based nano-materials and assumed that they could intimately interact with active centers of metallocene catalysts. We examined this hypothesis and, recently, reported that CNTs dramatically changed catalytic natures of group 4-based catalysts when they formed hybrid systems with such catalysts. In conclusion, we produced hybrid materials composed of group-4 based metallocenes, $Cp_2ZrCl_2$ and $Cp_2TiCl_2$, and carbon-based nano-materials such as RGO and MWCNT. Such hybrids were generated via simple adsorption between Cp rings of metallocenes and graphitic surfaces of graphene/CNT. The hybrids showed interesting catalytic behaviors for ethylene polymerizations. Resulting PEs had significantly increased Mw relative to those produced from free metallocene-based catalytic systems, which are not adsorbed on carbon-based nano-materials. UHMWPEs with extremely high Mw were obtained at low Tp.

  • PDF

Study on Effects of Ni/Al2O3 Catalysts Added with Mo on Durability Improvement in Steam Reforming Reactions (Mo를 첨가한 Ni/Al2O3 촉매의 수증기 개질반응에서의 내구성 증진 특성연구)

  • Won, Jong Min;Park, Gi Woo;Lee, Jin Woo;Hong, Sung Chang
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.560-567
    • /
    • 2016
  • In this study, we characterized steam reforming reactions and surface of $Ni/Al_2O_3$ catalysts. Ni-Mo based catalysts were prepared by loading Mo as the co-catalyst and reaction activities of the Ni-Mo based catalysts were compared with those of Ni-based catalysts. Through the $H_2$-TPR and XPS analysis it was confirmed that this characteristic efficiency. $O_2$-TPO analysis was performed to examine the deposition characteristics, bonding structures and evaporation characteristics of carbon deposited on the surface of catalysts after long run experiments were performed for steam reforming reactions. As the results, it was found that durability was improved in Ni-Mo based catalysts inhibiting formation of graphitic carbon species which reduced reaction activities of the catalysts by strongly interacting with Ni in the steam reforming reaction.