• 제목/요약/키워드: Carbon capture storage

Search Result 165, Processing Time 0.027 seconds

Scenario Analysis, Technology Assessment, and Policy Review for Achieving Carbon Neutrality in the Energy Sector (에너지 부문의 탄소중립 달성을 위한 국내외 시나리오 분석 및 기술, 정책현황 고찰)

  • Han Saem Park;Jae Won An;Ha Eun Lee;Hyun Jun Park;Seung Seok Oh;Jester Lih Jie Ling;See Hoon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.496-504
    • /
    • 2023
  • Countries worldwide are striving to find new sources of sustainable energy without carbon emission due to the increasing impact of global warming. With the advancement of the fourth industrial revolution on a global scale, there has been a substantial rise in energy demand. Simultaneously, there is a growing emphasis on utilizing energy sources with minimal or zero carbon content to ensure a stable power supply while reducing greenhouse gas emissions. In this comprehensive overview, a comparative analysis of carbon reduction policies of government was conducted. Based on international carbon neutrality scenarios and the presence of remaining thermal power generation, it can be categorized into two types: "Rapid" and "Safety". For the domestic scenario, the projected power demand and current greenhouse gas emissions in alignment with "The 10th Basic Plan for Electricity Supply and Demand" was examined. Considering all these factors, an overview of the current status of carbon neutrality technologies by focusing on the energy sector, encompassing transitions, hydrogen, transportation and carbon capture, utilization, and storage (CCUS) was offered followed by summarization of key technological trends and government-driven policies. Furthermore, the central aspects of the domestic carbon reduction strategy were proposed by taking account of current mega trends in the energy sector which are highlighted in international scenario analyses.

Combustion Characteristics of Waste Sewage Sludge using Oxy-fuel Circulating Fluidized Bed (슬러지 순산소 유동층 연소특성)

  • Jang, Ha-Na;Sung, Jin-Ho;Choi, Hang Seok;Seo, Yong-Chil
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.846-853
    • /
    • 2017
  • Cold bed and $30kW_{th}$ pilot bed tests using circulating fluidized bed (CFB) were conducted to apply oxy-fuel technology for waste sludge combustion as a carbon capture and storage technology. In cold bed test, the minimum fluidization velocity ($u_{mf}$) and superficial velocity for fast fluidization was determined as 0.120 m/s and 2.5 m/s, respectively. In the pilot test, air and oxy-fuel combustion experiments for waste sludge were conducted using CFB unit. The flue-gas temperature in 21~25% oxy-fuel combustion was higher than that of air and up to 30% oxy-fuel combustion. In addition, the concentration of carbon dioxide was more than 80% with the oxygen injection range from 21% to 25% in oxy-fuel CFB waste sludge combustion.

Insights into Enzyme Reactions with Redox Cofactors in Biological Conversion of CO2

  • Du-Kyeong Kang;Seung-Hwa Kim;Jung-Hoon Sohn;Bong Hyun Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1403-1411
    • /
    • 2023
  • Carbon dioxide (CO2) is the most abundant component of greenhouse gases (GHGs) and directly creates environmental issues such as global warming and climate change. Carbon capture and storage have been proposed mainly to solve the problem of increasing CO2 concentration in the atmosphere; however, more emphasis has recently been placed on its use. Among the many methods of using CO2, one of the key environmentally friendly technologies involves biologically converting CO2 into other organic substances such as biofuels, chemicals, and biomass via various metabolic pathways. Although an efficient biocatalyst for industrial applications has not yet been developed, biological CO2 conversion is the needed direction. To this end, this review briefly summarizes seven known natural CO2 fixation pathways according to carbon number and describes recent studies in which natural CO2 assimilation systems have been applied to heterogeneous in vivo and in vitro systems. In addition, studies on the production of methanol through the reduction of CO2 are introduced. The importance of redox cofactors, which are often overlooked in the CO2 assimilation reaction by enzymes, is presented; methods for their recycling are proposed. Although more research is needed, biological CO2 conversion will play an important role in reducing GHG emissions and producing useful substances in terms of resource cycling.

Crystal Structure of a Highly Thermostable α-Carbonic Anhydrase from Persephonella marina EX-H1

  • Kim, Subin;Sung, Jongmin;Yeon, Jungyoon;Choi, Seung Hun;Jin, Mi Sun
    • Molecules and Cells
    • /
    • v.42 no.6
    • /
    • pp.460-469
    • /
    • 2019
  • Bacterial ${\alpha}-type$ carbonic anhydrase (${\alpha}-CA$) is a zinc metalloenzyme that catalyzes the reversible and extremely rapid interconversion of carbon dioxide to bicarbonate. In this study, we report the first crystal structure of a hyperthermostable ${\alpha}-CA$ from Persephonella marina EX-H1 (pmCA) in the absence and presence of competitive inhibitor, acetazolamide. The structure reveals a compactly folded pmCA homodimer in which each monomer consists of a 10-stranded ${\beta}-sheet$ in the center. The catalytic zinc ion is coordinated by three highly conserved histidine residues with an exchangeable fourth ligand (a water molecule, a bicarbonate anion, or the sulfonamide group of acetazolamide). Together with an intramolecular disulfide bond, extensive interfacial networks of hydrogen bonds, ionic and hydrophobic interactions stabilize the dimeric structure and are likely responsible for the high thermal stability. We also identified novel binding sites for calcium ions at the crystallographic interface, which serve as molecular glue linking negatively charged and otherwise repulsive surfaces. Furthermore, this large negatively charged patch appears to further increase the thermostability at alkaline pH range via favorable charge-charge interactions between pmCA and solvent molecules. These findings may assist development of novel ${\alpha}-CAs$ with improved thermal and/or alkaline stability for applications such as $CO_2$ capture and sequestration.

Characteristics of film-type crystal growth mechanism of CO2 hydrate (CO2 하이드레이트의 film형 결정성장 거동에 관한 연구)

  • Lee, Hyunju;Kim, Soomin;Lee, Ju-Dong;Kim, Yangdo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.2
    • /
    • pp.93-100
    • /
    • 2013
  • Many researches have been carried out to reduce and/or to capture the major global warming gases. Especially, the hydrate formation mechanisms were intensively investigated for carbon dioxide sequestration and storage process applications. In this study, the characteristics of film-type crystal growth mechanism of carbon dioxide hydrate were comprehensively examined. Carbon dioxide hydrate crystal was formed in semi-batch type stir reactor at various pressure conditions while the temperature was fixed to be constant to reduce and minimize the guest gas solubility effects. A supply gas composition was 99.999 % of Carbon dioxide, the observation data was collected by optical microscope adopted CCD camera (Nikon DS-5M/Fi1/2M-U2). This study revealed that the guest gas pressure changes significantly altered the crystal growth mechanism and film growth rate of carbon dioxide hydrate crystal. The critical pressure of the carbon dioxide hydrate of crystal growth mechanism change was found to be 2.0 MPa. The capillary force and gas concentration gradient also significantly changed the film-type crystal growth mechanism of carbon dioxide hydrate crystal.

Spatio-Temporal Monitoring of Soil CO2 Fluxes and Concentrations after Artificial CO2 Release (인위적 CO2 누출에 따른 토양 CO2 플럭스와 농도의 시공간적 모니터링)

  • Kim, Hyun-Jun;Han, Seung Hyun;Kim, Seongjun;Yun, Hyeon Min;Jun, Seong-Chun;Son, Yowhan
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.2
    • /
    • pp.93-104
    • /
    • 2017
  • CCS (Carbon Capture and Storage) is a technical process to capture $CO_2$ from industrial and energy-based sources, to transfer and sequestrate impressed $CO_2$ in geological formations, oceans, or mineral carbonates. However, potential $CO_2$ leakage exists and causes environmental problems. Thus, this study was conducted to analyze the spatial and temporal variations of $CO_2$ fluxes and concentrations after artificial $CO_2$ release. The Environmental Impact Evaluation Test Facility (EIT) was built in Eumseong, Korea in 2015. Approximately 34kg $CO_2$ /day/zone were injected at Zones 2, 3, and 4 among the total of 5 zones from October 26 to 30, 2015. $CO_2$ fluxes were measured every 30 minutes at the surface at 0m, 1.5m, 2.5m, and 10m from the $CO_2$ releasing well using LI-8100A until November 13, 2015, and $CO_2$ concentrations were measured once a day at 15cm, 30cm, and 60cm depths at every 0m, 1.5m, 2.5m, 5m, and 10m from the well using GA5000 until November 28, 2015. $CO_2$ flux at 0m from the well started increasing on the fifth day after $CO_2$ release started, and continued to increase until November 13 even though the artificial $CO_2$ release stopped. $CO_2$ fluxes measured at 2.5m, 5.0m, and 10m from the well were not significantly different with each other. On the other hand, soil $CO_2$ concentration was shown as 38.4% at 60cm depth at 0m from the well in Zone 3 on the next day after $CO_2$ release started. Soil $CO_2$ was horizontally spreaded overtime, and detected up to 5m away from the well in all zones until $CO_2$ release stopped. Also, soil $CO_2$ concentrations at 30cm and 60cm depths at 0m from the well were measured similarly as $50.6{\pm}25.4%$ and $55.3{\pm}25.6%$, respectively, followed by 30cm depth ($31.3{\pm}17.2%$) which was significantly lower than those measured at the other depths on the final day of $CO_2$ release period. Soil $CO_2$ concentrations at all depths in all zones were gradually decreased for about 1 month after $CO_2$ release stopped, but still higher than those of the first day after $CO_2$ release stared. In conclusion, the closer the distance from the well and the deeper the depth, the higher $CO_2$ fluxes and concentrations occurred. Also, long-term monitoring should be required because the leaked $CO_2$ gas can remains in the soil for a long time even if the leakage stopped.

Application of Inclusive Environmental Impact Assessment for Newly-Proposed Airport in Korea (동남권 신공항 건설에 대한 포괄적 환경영향평가 기법의 적용)

  • Lee, Hee-Su;Park, Jong-Chun;Kim, Hyo-Seob;Jang, Chang-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.54-58
    • /
    • 2011
  • The need and importance of developing and utilizing the oceans, not only as sources of renewable energy and mineral resources, but also as countermeasures to global warming such as for CCS (carbon capture and storage), have continued to increase, especially in countries with limited land areas and resources. Therefore, it is necessary to assess the sustainability of an ocean utilization technology or system not only from an economic point of view but also from an ecological one. For this purpose, it might be effective to develop a comprehensive evaluation method and/or index, by which the assessment of and decisions about a technology and system can be made more objectively. It would also be useful to have an environmental simulation model, which was developed and reported in a previous research. The aim of this study was to modify a reasonable and quantitative index, with which a comprehensive evaluation system can be established, to assess environmental sustainability and risk.

Hydration Characteristics of Coal-Fly Ash Containing High CaO Compound (CaO 화합물이 다량 함유된 비산재의 수화 특성에 관한 연구)

  • Sim, Jun-Soo;Lee, Ki-Gang;Kim, Yu-Taek;Kang, Seung-Ku
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.2
    • /
    • pp.185-190
    • /
    • 2012
  • The purpose of this study was to examine a possibility that fly ash could be used as raw material for carbonation by conducting the experiment on magnetic separation and hydration of fly ash that contained a large amount of CaO composite. Wet magnetic separation experiment was performed to remove the component of magnetic substance that contained fly ash, which aimed at increasing the content of CaO in the non-magnetic domain. The selected fly ash was used for hydration experiment before the TG-DTA, XRF and XRD analyses were made to confirm the Ca component that could be carbonated. Then, the fly ash was turned to a hydrate that was favorable to dissociation of $Ca^{2+}$ ion. As a result, the magnetic separation enabled detecting the content of CaO component by up to 61 wt% in the non-magnetic domain. Since the hydrate was confirmed, it is believed that the fly ash can be used as raw material for carbonation.

Performance Evaluation of an Oxy-coal-fired Power Generation System - Thermodynamic Evaluation of Power Cycle (순산소 석탄 연소 발전 시스템의 성능 평가 - 동력 사이클의 열역학적 해석)

  • Lee, Kwang-Jin;Choi, Sang-Min;Kim, Tae-Hyung;Seo, Sang-Il
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.2
    • /
    • pp.1-11
    • /
    • 2010
  • Power generation systems based on the oxy-coal combustion with carbon dioxide capture and storage (CCS) capability are being proposed and discussed lately. Although a large number of lab scale studies for oxy-coal power plant have been made, studies of pilot scale or commercial scale power plant are not enough. Only a few demonstration projects for oxy-coal power plant are publicized recently. The proposed systems are evolving and various alternatives are to be comparatively evaluated. This paper presents a proposed approach for performance evaluation of a commercial 100 MWe class power plant, which is currently being considered for 'retrofitting' for the demonstration of the concept. The system is configurated based on design and operating conditions with proper assumptions. System components to be included in the discussion are listed. Evaluation criteria in terms of performance are summarized based on the system heat and mass balance and simple performance parameters, such as the fuel to power efficiency and brief introduction of the second law analysis. Also, gas composition is identified for additional analysis to impurities in the system including the purity of oxygen and unwanted gaseous components of nitrogen, argon and oxygen in air separation unit and $CO_2$ processing unit.

Characteristics and Economic Evaluation of a CO2-Capturing Repowering System with Oxy-Fuel Combustion for Utilizing Exhaust Gas of MCFC (MCFC 배기가스를 이용하는 순산소연소 $CO_2$ 회수형 발전시스템의 특성과 경제성 평가)

  • Pak, Pyong-Sik;Lee, Young-Duk;Ahn, Kook-Young;Jeong, Hyun-Il
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2940-2945
    • /
    • 2008
  • The scale of 2.4 MW MCFC was taken to construct a high-efficiency and economical power generation system without CO2 emission into the atmosphere for utilizing its exhaust gas. The conventional steam turbine power generation system (STGS) was evaluated and the net generated power (NGP) was estimated to be only 133 kW and the STGS is not economically feasible. A CO2-caputuring repowering system was proposed, where low temperature steam (LTS) produced at HRSG by using exhaust gas from MCFC is utilized as a main working fluid of a gas turbine, and the temperature of LTS was raised by combusting fuel in a combustor by using pure oxygen, not the air. It has been shown that NGP of the proposed system is 264 kW, and CO2 reduction amount is 608 t-CO2/y, compared to 306 t-CO2/y of STGS. The CO2 reduction cost was estimated to be negligible small, even when the costs of oxygen production and CO2 liquefaction facilities etc. were taken into account.

  • PDF