• Title/Summary/Keyword: Carbon bonding

Search Result 484, Processing Time 0.029 seconds

1.9wt%C 초고탄소 워크롤 단조 공정 : Part II - 기공압착 및 확산접합 (Forging of 1.9wt%C Ultrahigh Carbon Workroll : Part II - Void Closure and Diffusion Bonding)

  • 강성훈;임형철;이호원
    • 소성∙가공
    • /
    • 제22권8호
    • /
    • pp.463-469
    • /
    • 2013
  • In the previous work, a new forging process design, which included incremental upsetting, diffusion bonding and cogging, was suggested as a method to manufacture 1.9wt%C ultrahigh carbon workrolls. The previous study showed that incremental upsetting and diffusion bonding are effective in closing voids and healing of the closed void. In addition, compression tests of the 1.9wt%C ultrahigh carbon steel revealed that new microvoids form within the blocky cementite at temperatures of less than $900^{\circ}C$ and that local melting can occur at temperatures over $1120^{\circ}C$. Thus, the forging temperature should be controlled between 900 and $1120^{\circ}C$. Based on these results, incremental upsetting and diffusion bonding were used to check whether they are effective in closing and healing voids in a 1.9wt%C ultrahigh carbon steel. The incremental upsetting and diffusion bonding were performed using sub-sized specimens of 1.9wt%C ultrahigh carbon steel. The specimen was deformed only in the radial direction during the incremental upsetting until the reduction ratio reached about 45~50%. After deformation the specimens were kept at $1100^{\circ}C$ for the 1 hour in order to obtain a high bonding strength for the closed void. Finally, microstructural observations and tensile tests were conducted to investigate void closure behavior and bonding strength.

염료감응 태양전지용 고성능 탄소 상대전극 제작 (Fabrication of High-performance Carbon Counter Electrode for Dye-sensitized Solar Cells)

  • 장연익;이승용;김동환;박종구
    • 한국분말재료학회지
    • /
    • 제14권1호
    • /
    • pp.44-49
    • /
    • 2007
  • In the fabrication of dye-sensitized solar cells (DSSCs), carbon counter electrode has been tested for replacing the platinum counter electrode which has two drawbacks: limited surface area and high material cost. Poor mechanical stability of carbon layer due to weak bonding strength to electrically conductive TCO (transparent conducting oxide) glass substrate is a crucial barrier for practical application of carbon counter electrode. In the present study a carbon counter electrode with high conversion efficiency, comparable to Pt counter electrode, could be fabricated by adaption of a bonding layer between particulate carbon material and TCO substrate.

RE-PECVD법에 의해 증착된 DLC박막의 결합 특성 (Bonding structure of the DLC films deposited by RE-PECVD)

  • 최봉근;신재혁;안종일;심광보
    • 한국결정성장학회지
    • /
    • 제14권1호
    • /
    • pp.27-32
    • /
    • 2004
  • RF-PECVD 방법을 이용하여 DLC(diamond-like carbon)박막을 메탄-수소 가스 혼합비 및 바이어스 전압에 따라 실리콘 웨이퍼 위에 증착하였다. DLC 박막의 결합구조적 특성 및 기계적 성질은 FT-IR, Raman, 그리고 nano-indenter를 이용하여 평가하였다. 혼합가스내 메탄의 유량과 바이어스 전압이 증가함에 따라 증착속도가 증가하였다. 박막내 탄소의 $sp^3/sp^2$ 결합비와 경도는 반응가스내 수소의 유량 및 바이어스 전압이 증가함에 따라 증가하였다.

표면 개질된 탄소나노튜브를 사용한 에폭시 복합재료의 마모특성에 관한 연구 (An investigation of tribology properties carbon nanotubes reinforced epoxy composites)

  • 아부바카 빈 술렁;곽정춘;박주혁
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.663-667
    • /
    • 2005
  • Surface modified carbon nanotubes were applied into the epoxy composites to investigate its tribological property. Carbon nanotubes reinforced epoxy composites were fabricated by casting. Effects to the tribological property of loading concentrations and types of surface modification of carbon nanotubes were investigated under sliding condition using linear reciprocal sliding wear tester. The results show that the small amount of carbon nanotubes into the epoxy exhibited lower weight loss than the pure epoxy. It is concluded that the effect of an enormous aspect ratio of carbon nanotubes surface area which wider than conventional fillers that react as interface for stress transfer. As increased the contents of carbon nanotubes, the weight loss from the wear test was reduced. And the surface modified carbon nanotubes show better tribological property than as produced carbon nanotubes. It is due that a surface modification of carbon nanotubes increases the interfacial bonding between carbon nanotubes and epoxy matrix through chemical bonding. Changes in worn surface morphology are also observed by optical microscope and SEM for investigating wear behaviors. Carbon nanotubes in the epoxy matrix near the surface are exposed, because it becomes the lubricating working film on the worn surface. It reduces the friction and results in the lower surface roughness morphology in the epoxy matrix as increasing the contents of the carbon nanotubes.

  • PDF

다양한 사이징제가 반응중합에 의해 제조된 나일론 6/탄소섬유 복합체의 물성에 미치는 영향 (Effect of Various Sizing Agents on the Properties of Nylon6/Carbon Fiber Composites Prepared by Reactive Process)

  • 박하늘;이학성;허몽영
    • Composites Research
    • /
    • 제31권6호
    • /
    • pp.299-303
    • /
    • 2018
  • 탄소섬유 강화 PA6 복합재료의 탄소섬유-메트릭스간 계면결합력과 반응중합도 향상을 위해서 기존 탄소섬유의 에폭시 사이징제를 디사이징처리하여 에폭시를 제거한 후 우레탄계, 나일론계, 페녹시계 사이징제로 재처리해주었으며, 리사이징처리된탄소섬유의표면을관찰하였다. 리사이징처리된탄소섬유의계면결합력은 IFSS(Interfacial shear strength)를 통해서 확인하였으며, 계면 결합 강도 측정 후 파단면은 주사전자현미경을 통해서 관찰하였다. 나일론계와 페녹시계 사이징제로 처리된 탄소섬유가 우레탄계 사이징에 비해 계면 결합력이 상승한 것을 확인하였다. 우레탄계 리사이징 처리된 탄소섬유는 기존 에폭시 사이징 탄소섬유보다 계면 결합력이 감소한 것으로 확인되었다. 이 결과는 기존 탄소섬유의 저활성과 평활성을 제거하여 탄소섬유와 나일론6 사이의 계면 결합력이 향상된 것으로 판단된다.

1.5wt%C 초고탄소 워크롤 제조를 위한 단조 공정 설계: 기공압착 및 접합강도 분석 (Process Design for Manufacturing 1.5wt%C Ultrahigh Carbon Workroll: Void Closure Behavior and Bonding Strength)

  • 임형철;이호원;김병민;강성훈
    • 소성∙가공
    • /
    • 제22권5호
    • /
    • pp.269-274
    • /
    • 2013
  • Experiments and numerical simulations of the incremental upsetting test were carried out to investigate void closure behavior and mechanical characteristic of a 1.5wt%C ultra-high carbon steel. The experimental results showed that the voids become quickly smaller as the reduction ratio increases. The simulation results confirmed this behavior and indicated that the voids were completely closed at a reduction ratio of about 40~45% during incremental upsetting. After the completion of the incremental upsetting tests, the process of diffusion bonding was employed to heal the closed voids in the deformed specimens. To check the appropriate temperature for diffusion bonding, deformed specimens were kept at 800, 900, 1000 and $1100^{\circ}C$ for an hour. In order to investigate the effect of holding time for diffusion bonding at $1100^{\circ}C$, specimens were kept at 10, 20, 30, 40, 50 and 60minutes in the furnace. A distinction between closed and healed voids was clearly established using microstructural observations. In addition, subsequent tensile tests demonstrated that complete healing of a closed void was achieved for diffusion bonding temperatures in the range $900{\sim}1100^{\circ}C$ with a holding time larger than 1 hour.

탄소나노튜브 길이 변화에 대한 확산방지층과 박막 증착 온도의 영향 (The Effect of Diffusion Barrier and thin Film Deposition Temperature on Change of Carbon Nanotubes Length)

  • 홍순규;이형우
    • 한국분말재료학회지
    • /
    • 제24권3호
    • /
    • pp.248-253
    • /
    • 2017
  • In this study, we investigate the effect of the diffusion barrier and substrate temperature on the length of carbon nanotubes. For synthesizing vertically aligned carbon nanotubes, thermal chemical vapor deposition is used and a substrate with a catalytic layer and a buffer layer is prepared using an e-beam evaporator. The length of the carbon nanotubes synthesized on the catalytic layer/diffusion barrier on the silicon substrate is longer than that without a diffusion barrier because the diffusion barrier prevents generation of silicon carbide from the diffusion of carbon atoms into the silicon substrate. The deposition temperature of the catalyst and alumina are varied from room temperature to $150^{\circ}C$, $200^{\circ}C$, and $250^{\circ}C$. On increasing the substrate temperature on depositing the buffer layer on the silicon substrate, shorter carbon nanotubes are obtained owing to the increased bonding force between the buffer layer and silicon substrate. The reason why different lengths of carbon nanotubes are obtained is that the higher bonding force between the buffer layer and the substrate layer prevents uniformity of catalytic islands for synthesizing carbon nanotubes.

유도가열 기술을 이용한 탄소섬유-열가소성 복합재의 접합 공정에 관한 연구 (A Study on the Bonding Process of Carbon Fiber-Thermoplastic Composite Using Induction Heating Technology)

  • 강창수;유명한;서민강;최보경
    • Composites Research
    • /
    • 제34권6호
    • /
    • pp.421-425
    • /
    • 2021
  • 본 연구에서는 동일한 열가소성 수지(PEEK)와 각기 다른 탄소섬유(Type A, Type B) UD 테이프를 이용하여 열가소성 복합재를 제작하고 제작된 각각 2개의 복합재를 유도가열 용접방식에 따라 접합 특성 및 기계적 특성에 대하여 고찰하였다. 복합재의 접합 특성과 기계적 특성은 비파괴검사인 C-Scan, B-Scan과 전단 강도(Single lap shear)를 각각 측정하였고, 열화상 카메라를 이용하여 시편 표면의 온도를 모니터링 하였다.

Field Emission Characteristics of Carbon Nanotube Cathode Using Ag Nano-Powder as Bonding Materials

  • An, Young-Je;Ha, Sang-Hoon;Choi, Young-Jun;Chang, Ji-Ho;Lee, Hong-Chan;Cho, Young-Rae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.1594-1597
    • /
    • 2008
  • Carbon nanotube (CNT) cathodes were fabricated using nano-sized silver powders as a bonding material. The effects of powder size on the field emission properties for the CNT cathode were investigated The better emission properties of CNT cathodes using smaller particles are due to a low sintering temperature of the bonding materials.

  • PDF

NITROGEN DOPED DIAMOND LIKE CARBON FILM SYNTHESIZED BY MICROWAVE PLASMA CVD

  • Urao, Ryoichi;Hayatsu, Osamu;Satoh, Toshihiro;Yokota, Hitoshi
    • 한국표면공학회지
    • /
    • 제29권5호
    • /
    • pp.549-555
    • /
    • 1996
  • Diamond Like Carbon film is amorphous film which is considered to consist of three coordinate graphite structure and tetrahedron coordinate diamond structure. Its hardness, thermal conductivity and chemical stability are nearly to one of diamond. It is well known to become semi-conductor by doping of inpurity. In this study Diamond Like Carbon film was synthesized by Microwave Plasma CVD in the gas mixture of hydrogen-methan-nitrogen and doped of nitrogen on the single-crystal silicon or silica glass. The temperature of substrate and nitrogen concentration in the gas mixture had an effect on the bonding state, structural properties and conduction mechanism. The surface morphology was observed by Scanning Electron Microscope. The strucure was analyzed by laser Raman spectrometry. The bonding state was evaluated by electron spectroscopy. Diamond Like Carbon film synthesized was amorphous carbon containing the $sp^2$ and $sp^3$ carbon cluster. The number of $sp^2$ bonding increased as nitrogen concentration increased from 0 to 40 vol% in the feed gas at 1233K substrate temperature and at $7.4\times10^3$ Pa. Increase of nitrogen concentration made Diamond Like Carbon to be amorphous and the doze of nitragen could be controlled by nitrogen concentration of feed gas.

  • PDF