• Title/Summary/Keyword: Carbon ball

Search Result 221, Processing Time 0.028 seconds

The Sliding Wear Characteristics of Carbon Steel Castings against High Carbon Steel Wire Rods (탄소주강과 경강선재간의 미끄럼 마멸특성)

  • 류중북;채영훈;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.319-326
    • /
    • 2001
  • The sliding wear characteristics of carbon steel castings were Investigated using a ball on disk type tester. The experiment was conducted using high carbon steel wire rods as ball material and carbon steel castings as disk material and different operating conditions, at room temperature under a lubrication and dry conditions. The results showed that the carbon steel castings appeared average wear volume Is lowed after annealing under a lubrication conditions and wear curve linear Increased. The specific wear rate of carbon steel castings Increased with wire diameter lubrication and dry also Increased 125 times In Ory. The sliding wear mechanism were Investigated due to fatigue wear lubrications and abrasive wear dries also wire Included fatigue and abrasive wear by plastic flow.

  • PDF

Structural Modification of Carbon Nanotubes during Ball-milling (탄소 나노튜브의 볼밀링 시 구조 변화)

  • Nam, Hye Rim;Ahn, Jung-Ho
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.258-263
    • /
    • 2013
  • We examined various ball-milling parameters which affect the structural and morphological modification of multi-wall carbon nanotubes. In particular, the effect of milling mode and the use of different milling agents were examined. Friction milling mode induced more structural changes than impact milling mode except the use of dry ice as a milling agent. Wet milling was helpful for reducing more effectively the agglomeration of nanotubes than dry milling. The use of hard solid particles such as silica and alumina as milling agents resulted in an effective shortening of nanotubes, but often susceptible to the amorphization and the destruction of crystallinity.

Preparation and Characterization of Spherical Carbon Composite for Use as Anode Material for Lithium Ion Batteries

  • Ahn, Byoung-Hoon;Lee, Sung-Man
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1331-1335
    • /
    • 2010
  • A novel spherical carbon composite material, in which nanosized disordered carbons are dispersed in a soft carbon matrix, has been prepared and investigated for use as a potential anode material for lithium ion batteries. Disordered carbons were synthesized by ball milling natural graphite in air. The composite was prepared by mixing the ball-milled graphite with petroleum pitch powder, pelletizing the mixture, and pyrolyzing the pellets at $1200^{\circ}C$ in an argon flow. The ballmilled graphite consists of distorted nanocrystallites and amorphous phases. In the composite particle, nanosized flakes are uniformly distributed in a soft carbon matrix, as revealed by X-ray diffractometer (XRD) and transmission electron microscopy (TEM) experiments. The composite is compatible with a pure propylene carbonate (PC) electrolyte and shows high rate capability and excellent cycling performance. The electrochemical properties are comparable to those of hard carbon.

Effect of Hardness of Mating Materials on DLC Tribological Characteristics

  • Na, Byung-Chul;Akihiro Tanaka
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.38-42
    • /
    • 2002
  • Diamond-like Carbon(DLC) films were deposited on Si wafers by an RF-plasma-assisted CVD using CH$_4$gas. Tribological tests were conducted with the use of a rotating type ball on a disk friction tester with dry air. This study made use of four kinds of mating balls that were made with stainless steel but subjected to different annealing conditions in order to achieve different levels of hardness. In all load conditions, testing results demonstrated that the harder the mating materials, the lower the friction coefficient was. The friction coefficients were fecund to be lower with austenite mating balls than with fully annealed martensite balls. Conversely, the high friction coefficient found in soft martensite balls appeared to be caused by the larger contact area between the DLC film and the ball. The wear tracks on DLC films and mating balls could prove that effect. Measuring the wear track of both DLC films and mating balls revealed a similar tendency compared to the results of friction coefficients. The wear rate of austenite balls was also less than that of fully annealed martensite balls. Friction eoefficients decrease when applied leads exceed critical amount. The wear track on mating balls showed that a certain amount of material transfer occurs from the DLC film to the mating ball during a high friction process. Raman Spectra analysis Showed that the transferred materials were a kind of graphite and that the contact surface of the DLC film seemed to undergo a phase transition from carbon to graphite during the high friction process.

Nickel Particle Coatings by Electroless Plating onto Carbon Nanotubes (탄소나노튜브 표면의 무전해 니켈입자 코팅)

  • Cho, Gue-Serb;Lim, Jung-Kyu;Jang, Hoon;Choe, Kyeong-Hwan
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.5
    • /
    • pp.462-468
    • /
    • 2010
  • Carbon Nanotubes (CNTs) have recently emerged as a material with outstanding properties. It has shown promising potential for applications in many engineering fields as electronic devices, thermal conductors, and light-weight composites. Researchers have investigated their use as reinforcements in themetal matrix composites of CNTs. In the present work, we decorated CNTs with Ni particles by electroless plating. The CNTs were wet-ball milled for various milling times with a nickel sulfate solution. The precipitated Ni particles were observed mainly by FESEM. In this study, the dispersion of the CNTs and Ni particles was improved with the addition of the surfactant. Also, as the CNTs were shortened and widened by an increased ball milling time, the size of the precipitated Ni particles increased. It was estimated that the CNTs were deformed and caused some defects on their surface during the ball milling process. Those defects were assumed to be heterogeneous nucleation sites for the Ni particles.

Effect of Ball Milling on Photosensitive Carbon Nanotube Pastes and Their Field Emission Properties (감광성 CNT paste에 대한 저에너지 Ball Milling 처리 효과)

  • Jang, Eun-Soo;Lee, Han-Sung;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.154-154
    • /
    • 2008
  • Although the screen printing technology using photosensitive carbon nanotube (CNT) paste has many advantages such as low cost, simple process, uniform emission, and capability of mass production, the CNT paste needs to be improved further in CNT dispersion, printability, adhesion, electrical conductivity, population of CNT emitters, etc. Ball milling has been frequently employed to prepare the CNT paste as ball milling can mix its ingredients very well and easily cut the long, entangled CNTs. This study carried out a parametric approach to fabricating the CNT paste in terms of low-energy ball milling and a paste composition. Field emission properties of the CNT paste was characterized with CNT dispersion and electrical conductivity which were measured by a UV-Vis spectrophotometer and a 4-point probe method, respectively. Main variables in formulating the CNT paste include a length of milling time, and amounts of CNTs and conductive inorganic fillers. In particular, we varied not only the contents of conductive fillers but also used two different sizes of filler particles of ${\mu}m$ and nm ranges. Among many variations of conductive fillers, the best field emission characteristics occurred at the 5 wt% fillers with the mixing ratio of 3:1 for ${\mu}m$-and nm-sizes. The amount and size of fillers has a great effect on the morphology, processing stability, and field emission characteristics of CNT emitter dots. The addition a small amount of nm-size fillers considerably improved the field emission characteristics of the photosensitive CNT paste.

  • PDF

Effect of Surface Pretreatment on the Corrosion Resistance of Epoxy-Coated Carbon Steel

  • Lee, DongHo;Park, JinHwan;Shon, MinYoung
    • Corrosion Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.165-172
    • /
    • 2012
  • The corrosion resistance of epoxy-coated carbon steel was evaluated. The carbon steel surface was subjected to different treatment methods such as steel grit blasting with different size, steel shot ball blasting and power tool treatment. To study the effect of the treatments, the topology of the treated surface was observed by optical 3D microscopy and a pull-off adhesion test was conducted. The corrosion resistance of the epoxy-coated carbon steel was further examined by electrochemical impedance spectroscopy (EIS) combined with hygrothermal cyclic testing. The results of EIS indicated that the epoxy-coated carbon steel treated with steel grit blasting showed an improved corrosion resistance compared to untreated epoxy-coated surfaces or surfaces subjected to shot ball blasting and power tool treatments.

Joint properties of carbon nanotube composite solder (탄소나노튜브 복합솔더의 본딩특성)

  • Ko, Young-Ki;Sa, Yoon-Ki;Choi, Yu-Ri;Lee, Chang-Woo;Yoo, Se-Hoon
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.74-74
    • /
    • 2009
  • 카본나노튜브(CNT) 복합체는 우수한 기계적 성질을 가지고 있어 다양한 분야에서 연구되고 있다. 본 연구에서는 카본나노튜브(CNT)를 간단한 볼밀공정을 사용하여 Sn3.5Ag solder ball과 SAC305 powder 표면에 혼합하고 이를 통해 접합부 특성을 관찰하였다. 볼밀을 실시하기 전 카본나노튜브(CNT)는 초음파을 이용하여 분산을 실시하였다. Sn3.5Ag solder ball의 직경은 450um이고 SAC305 powder의 직경은 약 30um이었으며 이때 사용한 볼밀볼의 직경은 각각 3mm, 1mm이다. 볼밀 회전속도는 약 300rpm이고 6, 12, 18, 24시간동안 볼밀을 실시하였다. 24시간 볼밀 후에도 solder ball과 solder powder의 모양은 크게 변하지 않았다. SEM을 통해 표면을 관찰한 결과 분산된 카본나노튜브(CNT)는 solder ball과 solder powder의 표면에서 관찰되었다. 카본나노튜브(CNT)가 삽입된 solder ball은 BGA coupon 위에 놓고 Reflow를 실시하여 접합하였고 solder powder은 flux를 첨가하여 paste로 제조하여 2012 chip에 대한 접합특성을 관찰하였다. 카본나노튜브(CNT)는 solder ball 내부의 표면근처에서 관찰되었으며 카본나노튜브(CNT)가 혼합된 solder ball은 Aging 실시 후에 IMC 두께가 카본나노튜브(CNT)가 혼합되지 않은 solder ball에 비해 두께가 작고 접합강도는 약 10% 증가하였다. 또한 카본나노튜브(CNT)가 혼합된 solder paste와 카본나노튜브(CNT)가 혼합되지 않은 solder paste를 비교한 결과 인쇄성은 모두 양호하였으며 카본나노튜브(CNT)가 혼합된 paste를 사용한 chip의 전단강도가 높게 나타났다.

  • PDF

Carbon rich fly ash and their nanostructures

  • Salah, Numan;Habib, Sami S.;Khan, Zishan H.;Alshahrie, Ahmed;Memic, Adnan;Al-ghamdi, Attieh A.
    • Carbon letters
    • /
    • v.19
    • /
    • pp.23-31
    • /
    • 2016
  • Carbon rich fly ash was recently reported to have compositions that are ideal for use as a precursor and catalyst for carbon nanotube growth. This fly ash powder is mostly composed of pure carbon, predominantly present as sp2. In this work, the effect of sonication time on the morphology and structural properties of carbon rich fly ash particles is reported. The obtained results show that ultrasound treatment is an effective tool for producing ultrafine particles/fragments with higher porosity, which might be suitable for the adsorption of gasses. Moreover, carbon nanoparticles (CNPs) of this fly ash were produced in parallel using the ball milling technique, and were evaluated as reinforcements for epoxy based composites. These CNPs have almost spherical shapes with particle sizes of around 30 nm. They were found to have strong C=O carbonyl group bonds, which might be generated during the ball milling process. The tensile testing results of a fly ash CNP reinforced epoxy composite showed significant improvements in the mechanical properties, mainly in the stiffness of the polymer. The stiffness value was increased by around 23% of that of neat epoxy. These CNPs with chemically active groups might also be useful for other applications.