• Title/Summary/Keyword: Carbon and nitrogen source

Search Result 778, Processing Time 0.026 seconds

PREPARATION OF AMORPHOUS CARBON NITRIDE FILMS AND DLC FILMS BY SHIELDED ARC ION PLATING AND THEIR TRIBOLOGICAL PROPERTIES

  • Takai, Osamu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.3-4
    • /
    • 2000
  • Many researchers are interested in the synthesis and characterization of carbon nitride and diamond-like carbon (DLq because they show excellent mechanical properties such as low friction and high wear resistance and excellent electrical properties such as controllable electical resistivity and good field electron emission. We have deposited amorphous carbon nitride (a-C:N) thin films and DLC thin films by shielded arc ion plating (SAIP) and evaluated the structural and tribological properties. The application of appropriate negative bias on substrates is effective to increase the film hardness and wear resistance. This paper reports on the deposition and tribological OLC films in relation to the substrate bias voltage (Vs). films are compared with those of the OLC films. A high purity sintered graphite target was mounted on a cathode as a carbon source. Nitrogen or argon was introduced into a deposition chamber through each mass flow controller. After the initiation of an arc plasma at 60 A and 1 Pa, the target surface was heated and evaporated by the plasma. Carbon atoms and clusters evaporated from the target were ionized partially and reacted with activated nitrogen species, and a carbon nitride film was deposited onto a Si (100) substrate when we used nitrogen as a reactant gas. The surface of the growing film also reacted with activated nitrogen species. Carbon macropartic1es (0.1 -100 maicro-m) evaporated from the target at the same time were not ionized and did not react fully with nitrogen species. These macroparticles interfered with the formation of the carbon nitride film. Therefore we set a shielding plate made of stainless steel between the target and the substrate to trap the macropartic1es. This shielding method is very effective to prepare smooth a-CN films. We, therefore, call this method "shielded arc ion plating (SAIP)". For the deposition of DLC films we used argon instead of nitrogen. Films of about 150 nm in thickness were deposited onto Si substrates. Their structures, chemical compositions and chemical bonding states were analyzed by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and infrared spectroscopy. Hardness of the films was measured with a nanointender interfaced with an atomic force microscope (AFM). A Berkovich-type diamond tip whose radius was less than 100 nm was used for the measurement. A force-displacement curve of each film was measured at a peak load force of 250 maicro-N. Load, hold and unload times for each indentation were 2.5, 0 and 2.5 s, respectively. Hardness of each film was determined from five force-displacement curves. Wear resistance of the films was analyzed as follows. First, each film surface was scanned with the diamond tip at a constant load force of 20 maicro-N. The tip scanning was repeated 30 times in a 1 urn-square region with 512 lines at a scanning rate of 2 um/ s. After this tip-scanning, the film surface was observed in the AFM mode at a constant force of 5 maicro-N with the same Berkovich-type tip. The hardness of a-CN films was less dependent on Vs. The hardness of the film deposited at Vs=O V in a nitrogen plasma was about 10 GPa and almost similar to that of Si. It slightly increased to 12 - 15 GPa when a bias voltage of -100 - -500 V was applied to the substrate with showing its maximum at Vs=-300 V. The film deposited at Vs=O V was least wear resistant which was consistent with its lowest hardness. The biased films became more wear resistant. Particularly the film deposited at Vs=-300 V showed remarkable wear resistance. Its wear depth was too shallow to be measured with AFM. On the other hand, the DLC film, deposited at Vs=-l00 V in an argon plasma, whose hardness was 35 GPa was obviously worn under the same wear test conditions. The a-C:N films show higher wear resistance than DLC films and are useful for wear resistant coatings on various mechanical and electronic parts.nic parts.

  • PDF

Biomass Production and Cell Wall Lysis of Rhizopus oryzae (Rhizopus oryzae의 균체생산 및 세포벽제거)

  • 남주현
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.2
    • /
    • pp.83-89
    • /
    • 1981
  • Several kinds of organic acids, alcohols, aromatic compounds and sugars as carbon sources were tested in order to produce the cell mass of Rhizopus oryzae which is used in part of food processing or organic acid fermentation. Sodium acetate among them was good enough for carbon source as well as glucose under the concentration of one percent. All nitrogenous substances tested such as ammonium, nitrate or organic nitrogen compounds were well used by this strain of Rhizopus oryzae as nitrogen source. Ammonium sulfate among inorganic nitrogen compounds was most utilized as a nitrogen source in glucose or acetate medium. This strain did not require any growth factors such as yeast extract. The following composition of medium was therefore determined in order to produce the cell mass of Rhizopus oryzae: Na-acetate 1 %, (NH$_4$)$_2$SO$_4$ 0.2%, $K_2$HPO$_4$ 0.05%, MgSO$_4$.7$H_2O$ 0.01%, NaCl 0.01% (PH 5.5). The cell wall of mycelium grown in above medium was lysed optimally at pH 6.5 and 5$0^{\circ}C$ by the action of Strepzyme 115-5. On producing protoplast from mycelium by enzymatic action, almost all of the mycelium was damaged after 4hrs of treatment.

  • PDF

Isolation of a Lipolytic and Proteolytic Bacillus licheniformis from Refinery Oily Sludge and Optimization of Culture Conditions for Production of the Enzymes

  • Devi, Sashi Prava;Jha, Dhruva Kumar
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.515-524
    • /
    • 2020
  • With the increasing demand for enzymes in industrial applications there is a growing need to easily produce industrially important microbial enzymes. This study was carried out to screen the indigenous refinery bacterial isolates for their production of two industrially important enzymes i.e. lipase and protease. A total of 15 bacterial strains were isolated using Soil Extract Agar media from the oil-contaminated environment and one was shown to produce high quality lipase and protease enzymes. The culture conditions (culture duration, temperature, source of nitrogen, carbon, and pH) were optimized to produce the optimum amount of both the lipase (37.6 ± 0.2 Uml-1) and the protease (41 ± 0.4 Uml-1) from this isolate. Productivity of both enzymes was shown to be maximized at pH 7.5 in a medium containing yeast extract and peptone as nitrogen sources and sucrose and galactose as carbon sources when incubated at 35 ± 1℃ for 48 h. Bacterial strain SAB06 was identified as Bacillus licheniformis (MT250345) based on biochemical, morphological, and molecular characteristics. Further studies are required to evaluate and optimize the purification and characterization of these enzymes before they can be recommended for industrial or environmental applications.

Submerged Culture Conditions for the Production of Alternative Natural Colorants by a New Isolated Penicillium purpurogenum DPUA 1275

  • Santos-Ebinuma, Valeria Carvalho;Teixeira, Maria Francisca Simas;Pessoa, Adalberto Jr.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.802-810
    • /
    • 2013
  • This work aims at investigating the production of yellow, orange, and red natural colorants in a submerged culture of Penicillium purpurogenum DPUA 1275. For this purpose, different experimental conditions evaluating the effect of incubation time, type and size of inoculum, and different carbon and nitrogen sources were performed. Furthermore, the growth kinetics were obtained in the conditions of $10^8$ spores/ml and 5 mycelia agar discs during 360 h. These experiments showed that 5 mycelia agar discs and 336 h promoted the highest yellow (3.08 $UA_{400nm}$), orange (1.44 $UA_{470nm}$), and red (2.27 $UA_{490nm}$) colorants production. Moreover, sucrose and yeast extract were the most suitable carbon and nitrogen sources for natural colorants production. Thus, the present study shows a new source of natural colorants, which can be used as an alternative to others available in the market after toxicological studies.

Assessment of Organic Matter Sources in the Singil Stream Flowing into Lake Shihwa, South Korea

  • Kim, Dahae;Kim, Jung-Hyun;Kang, Sujin;Kim, Min-Seob;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.2
    • /
    • pp.138-147
    • /
    • 2020
  • The Singil Stream, flowing into an artificial lake, Lake Shihwa (South Korea), experiences a strong anthropogenic pressure with continuous organic matter (OM) inputs from rural, urban, and industrial areas. In this study, we investigated suspended particulate matter (SPM) and streambed sediments collected along the Singil Stream in 2014 and 2016, by applying a dual element approach (δ13C and δ15N) to identify OM sources. The SPM and streambed sediment samples from the indusrial area showed higher organic carbon and nitrogen concentrations (or contents) than those from the other areas, with distinctively lower δ15N values. Accordingly, our dual element approach indicates that the industrial area was the predominant OM source influencing OM quality and thus water quality of the Singil Stream flowing into Lake Shihwa during the study periods. However, further studies are necessary to better constrain OM sources in the Singil Stream since OM sources from the industrial area appear to be complex.

Production and Isolation of Chlamydospores in Cylindrocaupon destructans Causing Root Rot of Panax quinquefolium (미국삼(Panan quinquefolium)에서 분리한 뿌리썩음병균 Cylindrocarpon destructans의 후막포자 생성 및 분리)

  • 조대휘;유연현
    • Journal of Ginseng Research
    • /
    • v.22 no.4
    • /
    • pp.304-309
    • /
    • 1998
  • Incubation condition affecting the chlamydospore formation and isolation from mycelia and conidia of Cylindrocarpon destructanse (isolate ACY-9701), isolated from the root rot lesion of the American ginseng (Panax quinquefolium) was investigated. Chlamydospores were formed from mycilia but not from conidia on the Czapek-Dox agar without carbon or nitrogen source after 20 days incubation at 2$0^{\circ}C$. In the medium added with nitrogen and carbon sources, immatured chlamy-dospore-like cells were formed from microconidia and mycelia as well. Immatured chlamydospore-like cells were formed from mycelia as well as microconidia In corn, kidney bean, and pea root extracts after 20 days incubation at 20"C, while typical chlamydospores were formed from both of them in the root extract of Panax quinquefolium. The 3.6 log chlamydospore/mm" was converted from microconidia in the medium, which was equal to 2.5% conidia formed. Under the light condition (251.1 pmol/m" sec, 12 hrs dark and light cycle), 4.2 log/mm" of chlamydospores were converted from interracially or terminal cells of macroconidia, which was 4.0% of macroconidia produced on Potato dextrose agar (PDA). When mycelia and microconidia were stored at -7$0^{\circ}C$ for 32 days and incubated on PDA after thawing at room temperature to isolate chlamydospores from them, microconidia and mycelia were still alive. Meanwhile, microconidial lysis was found after heating them at 32$^{\circ}C$ for 7 days, but the chlamydospores converted from macroconidia were not lysed up to 13 days at 32"C. to 13 days at 32"C.ot;C.

  • PDF

Isolation, Identification and Optimal Culture Conditions of Streptomyces albidoflavus C247 Producing Antifungal Agents against Rhizoctonia solani AG2-2

  • Islam, Rezuanul;Jeong, Yong-Tae;Ryu, Yeon-Ju;Song, Chi-Hyun;Lee, Yong-Se
    • Mycobiology
    • /
    • v.37 no.2
    • /
    • pp.114-120
    • /
    • 2009
  • Streptomyces albidoflavus C247 was isolated from the soil of the Gyeongsan golf course in Korea. Physiological, biochemical and 16S rDNA gene sequence analysis strongly suggested that the isolate belonged to Streptomyces albidoflavus. Preliminary screening revealed that the isolate was active against fungi and bacteria. Self-directing optimization was employed to determine the best combination of parameters such as carbon and nitrogen source, pH and temperature. Nutritional and culture conditions for the production of antibiotics by this organism under shake-flask conditions were also optimized. Maltose (5%) and soytone (5%) were found to be the best carbon and nitrogen sources for the production of antibiotics by S. albidoflavus C247. Additionally, 62.89% mycelial growth inhibition was achieved when the organism was cultured at $30^{\circ}C$ and pH 6.5. Ethyl acetate (EtOAc) was the best extraction solvent for the isolation of the antibiotics, and 100 ${mu}$/ml of EtOAc extract was found to inhibit 60.27% of the mycelial growth of Rhizoctonia solani AG2-2(IV) when the poison plate diffusion method was conducted.

Metabolic Flux Analysis of Beijerinckia indica for PS-7 Production

  • Wu Jian-Rong;Son Jeong Hwa;Seo Hyo-Jin;Kim Ki-Hong;Nam Yoon-Kwon;Lee Jin-Woo;Kim Sung-Koo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.91-98
    • /
    • 2005
  • In order to investigate central metabolic changes in Beijerinckia indica, cells were grown on different carbon sources and intracellular flux distributions were studied under varying concentrations of nitrogen. Metabolic fluxes were estimated by combining material balances with extracellular substrate uptake rate, biomass formation rate, and exopolysaccharide (EPS) accumulation rate. Thirty-one metabolic reactions and 30 intracellular metabolites were considered for the flux analysis. The results revealed that most of the carbon source was directed into the Entner-Doudoroff pathway, followed by the recycling of triose-3-phosphate back to Hexose­6-phosphate. The pentose phosphate pathway was operated at a minimal level to supply the precursors for biomass formation. The different metabolic behaviors under varying nitrogen concentrations were observed with flux analysis.

Exopolysaccharide (EPS) Production by Lactobacillus paracasei KLB58 in Modified Medium under Different Growth Conditions (다양한 배지 환경이 Lactobacillus paracasei KLB 58의 Exopolysaccharide (EPS) 생산량에 미치는 영향)

  • Lee, Choong-Young;Jeon, Jeong-Min;Lee, Hae-In;Kim, Min-Hee;Jung, Mi-Kyoung;So, Jae-Seong
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.18-22
    • /
    • 2008
  • Various probiotic Lactobacillus spp. are known to produce exopolysaccharide (EPS) which has potential health promoting functionality. A Lactobacillus paracasei strain producing EPS was isolated from healthy human. This strain, named L. paracasei KLB58, was grown on modified MRS medium. Experiments were conducted under various growth conditions to optimize the EPS production. Our study showed that incubation temperature played an important role in EPS production. When incubation temperature was changed from $37^{\circ}C$ to $25^{\circ}C$, the increase of EPS production (28.1 mg/ml) was the highest in our experiment. The type of carbon source in the medium also affected EPS production. Galactose was the most effective for EPS production among the carbon sources examined. Using galactose, glucose, lactose and sucrose, the amount of released EPS was 38.9 mg/ml, 35.6 mg/ml, 21.76 mg/ml and 16.9 mg/ml, respectively. However, acidity in growth medium inhibited EPS productivity due to the low growth yield. When grown at pH 4, L. paracasei KLB58 could only produce EPS of 14.6 mg/ml. When the initial amounts of nitrogen and carbon sources were examined, EPS production was not significantly affected by nitrogen source while carbon source affected considerably.

Quantitative Physiology of T. reesei

  • Ryu, Deway;Ryu, W.S.
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1979.04a
    • /
    • pp.115.2-115
    • /
    • 1979
  • By employing a two-stage continuous culture system, some of important physiological parameters involved in cellulase bicsynthesis have been evalua-ted with an ultimate objective of detigning an op-timally controlled tellulase process. Volumetric and specific cellulase productivities obtained were 90 IU/liter/hr and 8IU/g biomass/hr respectively. The maximum specific enzyme productivity observed was 14.8 IU/g hiomass/hr. The optimal dilution rate in the second stage which corresponded to the maximum enzyme productivity was 0.026-0.028 hr$^{-1}$ , and the specific growth rate in the second stage ihat suported maximum specific enzyme productivity was equal to orslightly less than zero. The maintenance coefficients deter-mined for oxygen and for carbon source are M$_{o}$=0.85mmmole/g biomass/hr and M$_{c}$=0.14 mmole hexose/g bio mass/hr respectively. The yield constants determined are; Y(x/o) =32.3g biomass/mole oxygen, Y (x/c) =1.1g bio-mass/g carbon or 0.44g biomass/g hexose, Y(x/n) = 19.6g biomass/g nitrogen for the enzyme produc-tion stage and 12.5g biomass/g nitrogen for the cell growth stage.e.e.

  • PDF