• Title/Summary/Keyword: Carbon and nitrogen source

Search Result 778, Processing Time 0.025 seconds

Nitrongen and Phosphorus Removal using Elutriated Acids of Food Waste as an External Carbon Source in SBR (음식물쓰레기 세정산발효액을 외부탄소원으로 주입한 SBR 공정에서 질소 및 인 제거)

  • Kwon, Koo-ho;Kim, Si-won;Lee, Min-jae;Min, Kyung-sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.462-467
    • /
    • 2006
  • An improvement of nitrogen and phosphorus removal in SBR using the elutriated acids from the food waste as an external carbon source was investigated in this study. The food waste was elutriated at $35^{\circ}C$ and pH 9 to produce the external carbon source. The elutriate of food waste were continuously collected. The elutriated liquid contained VFAs of 39,180 mg/L representing soluble COD of 44,700 mg/L. The SBR showed poor denitrification and EBPR (enhanced biological phosphorus removal) without elutriated VFAs addition. An average denitrification rate was 0.4 mg NOx-N/g MLVSS/day. In turn, EBPR was also inhibited by this poor denitrification because the remaining nitrate in anaerobic phase resulting a poor denitrification. On the other hand, the denitrification in anoxic phase significantly improved with an elutriated VFAs addition. Nitrate removal was 82% while the denitrification rate was 2.9 mg NOx-N/g MLVSS/day with 18.4 mL/cycle of elutriated VFAs. With the enhanced denitrification, nitrate concentration in anaerobic phase could effectively be controlled to a very low level. The elimination of nitrate inhibition in anaerobic phase resulted enhancement of EBPR. The specific phosphate release rate was $1.9mg\;PO_4^{3-}-P/g\; MLVSS/day$ with less than 0.5 mg/L of $PO_4^{3-}-P$ concentration.

Exopolysaccharide Production by Aureobasidium pullulans - Appearance of Melanin Pigment - (Aureobasidium pullulans 에 의한 Exopolysaccharide 생산 - 멜라닌 색소의 출현에 관한 연구 -)

  • 김재형;이기영;강성홍
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.134-142
    • /
    • 1989
  • In exopolysaccharide fermentation by Aureobasidium pulluans, the effects culture conditions (concentration of nitrogen, potassium phosphate, dissolved oxygen, and initial pH) on the production of exopolysaccharide and the appearance of melanin pigment were investigated. The results are as follows. (1) The specific growth rate and the specific production rate of exopolysaccharide were inhibited by substrate when the carbon source concentration higher than $50g\;/\;{\ell}$ and the cell growth increased with increases of nitrogen source but exopolysaccharide production decreased with the nitrogen concentration when it become greater than $1\;g\;/\;{\ell}$. (2) The maximum cell growth and the maximum exopolysaccharide production were obtained at initial pH values of 3.0 and 7.5 respectively. As the initial pH increased, the yeast-like cells increased and the increased of dissolved oxygen increased the cell growth and exopolysaccharide production. (3) As the concentration of dissolved oxygen is increased or the concentration of nitrogen source is decreased, the period of melanin pigment appearance becomes shorter and the melanin pigment never appeared when the initial pH was less than 3.0 or the potassium phosphate was not added.

  • PDF

Main-stream Partial Nitritation - Anammox (PN/A) Processes for Energy-efficient Short-cut Nitrogen Removal (주공정에서 아질산화-혐기성 암모늄 산화법에 의한 단축질소제거공정 연구동향)

  • Park, Hongkeun;Rhu, Daehwan
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.96-108
    • /
    • 2018
  • Large efforts have recently been made on research and development of sustainable and energy-efficient short-cut nitrogen removal processes owing to strong attention to the energy neutral/positive wastewater treatment system. Anaerobic ammonium oxidizing bacteria (anammox bacteria) have been highlighted since 1990's due to their unique advantages including 60% less energy consumption, nearly 100% reduction for carbon source requirement, and 80% less sludge production. Side-stream short-cut nitrogen removal using anammox bacteria and partial nitritation anammox (PN/A) has been well established, whereas substantial challenges remain to be addressed mainly due to undesired main-stream conditions for anammox bacteria. These include low temperature, low concentrations of ammonia, nitrite, free ammonia, free nitrous acid or a combination of those. In addition, an anammox side-stream nitrogen management is insufficient to reduce overall energy consumption for energy-neutral or energy positive water resource recovery facility (WRRF) and at the same time to comply with nitrogen discharge regulation. This implies the development of the successful main-stream anammox based technology will accelerate a conversion of current wastewater treatment plants to sustainable water and energy recovery facility. This study discusses the status of the research, key mechanisms & interactions of the protagonists in the main-stream PN/A, and control parameters and major challenges in process development.

Effects of Some Carbohydrates and Ammonium Sulfate on Lignin Degradation by Pseudomonas diminuta (탄수화물과 황산암모늄이 Pseudomonas diminuta의 리그닌 분해에 미치는 영향)

  • 김규중;신광수;맹진수;성치남
    • Korean Journal of Microbiology
    • /
    • v.26 no.2
    • /
    • pp.129-136
    • /
    • 1988
  • To investigate the influence of cosubstrate supplement and ammonium sulfate on lignin degradation by Pseudomonas diminuta KM-4-2, isolated in the laboratory, the strain was cultured on the lignin media which contained lignin as a source of carbon and the culture filtrate was analyzed by Sephadex G-75 column chromatography. It was found that polymerization was not appeared unlike wood-rot fungi. When the carbohydrates were added, the peak of lignin at 280nm by UV scanning spectra of the filtrate, was significantly increased. In order to determine the effect of ammonium sulfate on the ligninolytic activity, the isolated strain was incubated in the media containing 0.1%, 0.25% and 0.5% of nitrogen concentration in the Warburg flask and the rate of oxygen uptake was esitmated by Warbuge Respirometer. As a result, the activity was maximum at 0.1% of nitrogen concentration and thereafter decreased in parallel with nitrogen concentration.

  • PDF

Investigation of the Central Carbon Metabolism of Sorangium cellulosum: Metabolic Network Reconstruction and Quantification of Pathway Fluxes

  • Bolten, Christoph J.;Heinzle, Elmar;Muller, Rolf;Wittmann, Christoph
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.23-36
    • /
    • 2009
  • In the present work, the metabolic network of primary metabolism of the slow-growing myxobacterium Sorangium cellulosum was reconstructed from the annotated genome sequence of the type strain So ce56. During growth on glucose as the carbon source and asparagine as the nitrogen source, So ce56 showed a very low growth rate of $0.23\;d^{-1}$, equivalent to a doubling time of 3 days. Based on a complete stoichiometric and isotopomer model of the central metabolism, $^{13}C$ metabolic flux analysis was carried out for growth with glucose as carbon and asparagine as nitrogen sources. Normalized to the uptake flux for glucose (100%), cells recruited glycolysis (51%) and the pentose phosphate pathway (48%) as major catabolic pathways. The Entner-Doudoroff pathway and glyoxylate shunt were not active. A high flux through the TCA cycle (118%) enabled a strong formation of ATP, but cells revealed a rather low yield for biomass. Inspection of fluxes linked to energy metabolism revealed that S. cellulosum utilized only 10% of the ATP formed for growth, whereas 90% is required for maintenance. This explains the apparent discrepancy between the relatively low biomass yield and the high flux through the energy-delivering TCA cycle. The total flux of NADPH supply (216%) was higher than the demand for anabolism (156%), indicating additional reactions for balancing of NADPH. The cells further exhibited a highly active metabolic cycle, interconverting $C_3$ and $C_4$ metabolites of glycolysis and the TCA cycle. The present work provides the first insight into fluxes of the primary metabolism of myxobacteria, especially for future investigation on the supply of cofactors, building blocks, and energy in myxobacteria, producing natural compounds of biotechnological interest.

A Study on the Synthesis of Aqueous Biopolymer (수용성 생물 고분자 합성에 관한 연구)

  • 이기영;김재형
    • KSBB Journal
    • /
    • v.5 no.2
    • /
    • pp.101-106
    • /
    • 1990
  • The aspects of pullulan production by Aureobasidium pullulans were investigated under various initial pH, carbon source and nitrogen source conditions. The resulting pullulan fermentation broths were analyzed by using GC, LC and GPC techniques. The maximum pullulan production was obtained in the culture medium containing 5% sucrose at pH 6, 28$^{\circ}C$ after 7 days of cultivation. Under the pH 3, pullulan was almost not produced although the total cell mass of A. pullulans was increased, and the case on using (NH4)SO4 as a nitrogen source, which usually cause the fermentation medium under pH 3, also gave the similar phenomena. Sucrose was believed to converted to trisaccharide and glucose extracellulary and polymerization of glucose was proceeded intracellulary.

  • PDF

Effect of Nutrients and pH on the Growth and Sporulation of Four Entomogenous Hypomycetes Fungi (Deuteromycotina) (배지의 영양원 및 pH가 수종 곤충기생균의 균사생장 및 포자생산에 미치는 영향)

  • ;;R.M. Aguda
    • Korean journal of applied entomology
    • /
    • v.27 no.1
    • /
    • pp.41-46
    • /
    • 1988
  • Growth of Metarrhizium flavoviride var. minus and Hirsut lle strigosa showed good yield in the carbon source media adding dextrose, starch and saccharose, but Hirsutella sp. from korea greq well in the other media except in the dextrose media. Yeast extract was necessary for the mecelial growth of the fungi, but the fungi tested in this experiment showed a difference in the amount of required yeast extract. Growth of Nomurea rileyi was fastidious in the carbon and nitrorgen sourced media and the optimum pH of the media for growth was at 6.7. Sporulation of M. Flavoviride var. minus was high on media, containing 1%~2% of yeast extract as nitrogen and carbon source media, but N. rileyi sporulated abundantly on the media with nitrogen and dextrose.

  • PDF

Characterization of Azospirillum spp. Isolated from Korean Paddy Roots (우리나라 수도근권에서 분리된 Azospirillum spp.의 특성)

  • 조무제;강규영;강성모;윤한대
    • Korean Journal of Microbiology
    • /
    • v.25 no.2
    • /
    • pp.129-136
    • /
    • 1987
  • Nitrogen fixing activity associated with 40 varieties of rice was assayed at heading stage by an in situ acetylene reduction method. The in situ acetylene reduction activity and population of nitrogen fixing bacteria obtained on nitrogen-free malate medium for Azospirillum spp. enrichment showed positive correlation. Six Azospirillum spp. with high nitrogenase activity were isolated from the rice roots, from which five spp. were identified as A. lipoferum and one was A. brasilense. The physiological characteristics of the six Azospirillum isolates, that is, carbon source utilization, biotin requirement, antibiotic resistance, indole acetic acid excretion, plasmid profile and protein patterns were compared.

  • PDF

Optimization for the Production Factors of Cellulolytic Enzymes of a Fungus, Strain FJ1 by Response Surface Methodology (반응표면 분석에 의한 사상균 Strain FJ1의 Cellulolytic Enzymes 생산조건의 최적화)

  • 김경철;유승수;오영아;이용운;전선용;김성준
    • KSBB Journal
    • /
    • v.17 no.2
    • /
    • pp.195-202
    • /
    • 2002
  • The production conditions of cellulolytic enzymes by a fungus, strain FJ1, were optimized using response surface analysis. The culture factors which largely affected the production of enzymes such as cultivation time, carbon source concentration, nitrogen source concentration, and composition ratio of carbon sources were employed. Optimizedconditions of the factors above corresponding to each cellulolytic enzyme production were as fellowing: CMCase production was obtained in the conditions of cultivation time of 5.4 days, carbon source concentration of 3.5%, nitrogen source concentration of 0.6%, and composition ratio of carbon sources of 52:48 (avicel:CMC), xylanase appeared in the conditions of 5.3 days, 3.5%, 0.8%, and 54:46, respectively, and $\beta$-glucosidase were 7.0 days, 5.0%, 1.0%, and 83:17, respectively, and avicelase were 6.5 days, 4.0%, 0.9%, and 64:36, respectively. The activities of CMCase, xylanase, p-glucosidase, and avicelase predicted by the response surface methodology were 33.5, 52.6, 2.88, and 1.84 U/mL, respectively, and $\beta$-glucosidase activity was enhanced up to 74% when compared to that obtained in the experimental conditions.

반응표면 분석에 의한 Trichoderma sp. FJ1의 cellulolytic enzymes 생산의 최적화

  • Kim, Gyeong-Cheol;Yu, Seung-Su;O, Yeong-A;Lee, Yong-Un;Jeong, Seon-Yong;Kim, Seong-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.453-456
    • /
    • 2002
  • The production conditions of cellulolytic enzymes by Trichoderma sp. FJ1, were optimized using response surface analysis. The culture factors which largely affected to the production of enzymes such as cultivation time, carbon source concentration, nitrogen source concentration, and composition ratio of carbon sources were employed. Optimized conditions of the factors above to each cellulolytic enzyme production was as follow: CMCase production was obtained in the conditions of cultivation time of 5.4 days, 3.5% of carbon source concentration, 0.6% of nitrogen source concentration, and 52:48 (avicel:CMC) of composition ratio of carbon sources, respectively, xylanase appeared in the conditions of 5.3 day, 3.5%, 0.8%, and 54:46, respectively, and ${\beta}-glucosidase$ were 7.0 day, 5.0%, 1.0%, and 83:17, respectively, and avicelase were 6.5 day, 4.0%, 0.9%, and 64:36, respectively. The activities of CMCase, xylanase, ${\beta}-glucosidase$, and avicelase predicted by the response surface methodology were 33.5, 52.6, 2.88, and 1.84 U/ml, respectively, and ${\beta}-glucosidase$ was enhanced up to 74% compared to that obtained in the experimental conditions.

  • PDF