• Title/Summary/Keyword: Carbon Tetrachloride

Search Result 540, Processing Time 0.029 seconds

Effect of Polygoni Multiflori Ramulus extract against arachidonic acid and iron-induced oxidative stress in HepG2 cell and CCl4-induced liver injury in mice (야교등의 항산화 및 간보호효과)

  • Jeon, Chang Kwon;Jung, Ji Yun;Park, Chung A;Jee, Seon Young;Kim, Sang Chan
    • Herbal Formula Science
    • /
    • v.25 no.2
    • /
    • pp.155-166
    • /
    • 2017
  • Objectives : Polygoni Multiflori Ramulus has been widely used as a traditional medicinal herb for the treatment of insomnia, limb pain and itch. The extract of Polygoni Multiflori Ramulus (PMRE) is known to have a modulatory effect of many inflammatory responses. This study was performed to investigate the hepatoprotective effect of PMRE against arachidonic acid (AA) + iron-induced oxidative stress on HepG2 cell and carbon tetrachloride ($CCl_4$)-induced liver injury on mice. Methods : The effects of PMRE on cell viability was assessed by MTT assay. And flow cytometric analysis was performed to estimate the effects on mitochondrial function. To investigate its underlying mechanism, apoptosis-related proteins were analysed by using immunoblot analysis. In addition, ICR mouse were administrated (po) with the PMRE (30, 100 mg/kg) for 3 days and then, injected (ip) with $CCl_4$ (0.5 ml/kg body weight) to induce acute liver damage. The level of pro-caspase-3 was measured. Results : Treatment of PMRE increased relative cell viability, prevented a cleavage of poly (ADP ribose) polymerase and pro-caspase-3, and also reduced mitochondrial membrane permeability against AA + iron-induced oxidative stress. In addition, PMRE treatment decreased liver injury induced by $CCl_4$, as evidenced by increases in pro-caspase-3 level. Conclusions : These results demonstrate that PMRE has an ability to anti-oxidant and hepatoprotective effect against AA + iron-induced oxidative stress and $CCl_4$-induced liver injury.

Effects of compound traditional Astragalus and Salvia Miltiorrhiza extract on acute and chronic hepatic injury

  • Zhang, Xiaoxiang;Yang, Yan;Liu, Xin;Wu, Chao;Chen, Minzhu
    • CELLMED
    • /
    • v.3 no.2
    • /
    • pp.15.1-15.5
    • /
    • 2013
  • Previous reports showed that Compound Astragalus and Salvia miltiorrhiza extract (CASE), which was mainly composed of astragalosides, astragalus polysaccharide and salvianolic acids, inhibited hepatic fibrosis by mediating transforming growth factor-${\beta}$ (TGF-${\beta}$)/Smad signaling. Our aim was to examine the effects of CASE on D-galactosamine (D-GalN) treated liver injury in mice and carbon tetrachloride ($CCl_4$)-induced liver fibrosis in rats. CASE was administered to mice with D-GalN-induced liver injury and to rats with $CCl_4$-induced liver fibrosis, respectively. Liver injury was routinely evaluated by relative liver weight, serum levels of ALT, AST, hyaluronic acid (HA), hepatic malondialdehyde (MDA) content, superoxide dismutase (SOD) activity, hydroxyproline (HYP) and histopathologic changes. Treatment of mice with CASE (60, 120, and 240 mg/kg, ig) significantly lowered ALT, relative liver weight, and MDA levels when compared with D-GalN treated mice. CASE (120, 240 mg/kg) significantly lowered ALT, AST, HA, HYP, and MDA levels against $CCl_4$ treated rats. Decreased SOD level was reversed with CASE treatment. Upon histopathological examination, CASE treatment had significantly inhibitory effect on the progression of hepatic fibrosis in rats. These results indicate that CASE might be effective in treatment and prevention of acute and chronic hepatic injury due to its antioxidant activity.

Development of Primary Standard Gas Mixtures of Fourteen Volatile Organic Compounds in Hazardous Air Pollutants for Accurate Ambient Measurements in Korea (at 1 μmol/mol Levels) (유해대기오염물질 중 14종의 휘발성유기화합물 1차 표준가스개발 (1 μmol/mol 수준))

  • Kang, Ji Hwan;Kim, Young Doo;Kim, Mi Eon;Lee, Jinhong;Lee, Sangil
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.2
    • /
    • pp.331-341
    • /
    • 2018
  • Hazardous air pollutants(HAPs) in the atmosphere are regulated as major air pollutants in Korea by the Air Pollution Control Act. In order to manage and control HAPs, accurate standards, which are traceable to the International System of Units(SI), are required. In this study, primary standard gas mixtures(PSMs) of volatile organic compounds(VOCs) which are specified as HAPs were developed at $1{\mu}mol/mol$ levels. The selected fourteen VOCs include Benzene, Toluene, Ethylbenzene, m-Xylene, Styrene, o-Xylene, Chloroform, 1,1,2-Trichloroethane, Trichloroethylene, Tetrachloroethylene, 1,1-Dichloroethane, Carbon tetrachloride, 1,3-Butadiene, and Dichloromethane. The HAPs PSMs were gravimetrically prepared in aluminum cylinders and their consistency was verified within the relative expanded uncertainty of 0.71% (k=2). Potential adsorption loss onto the internal surface of cylinders was estimated by cylinder-to-cylinder division method. No adsorption loss was observed within the uncerainty of 0.53%. The long-term stability of the HAPs PSMs was evaluated comparing with freshly prepared HAPs PSMs. The HAPs PSMs were stable for one year within the uncertainty of 0.38%. The final uncertainty of the PSMs was determined by combining the preparation uncertainty, verification uncertainty, and stability uncertainty. Finally, traceable and stable HAPs PSMs at $1{\mu}mol/mol$ levels were developed with the uncertainty of less than 0.76% in high-pressure aluminum cylinders.

Hepatoprotecive Effects of Alnus japonica Extract on Experimental Liver Injury Models (오리나무 추출물(AI-1367)의 간질환 동물모델에서의 간 보호효과)

  • Zhao, Yu-Zhe;Lee, Sung-Hee;Huh, Jae-Wook;Ra, Jeong-Chan;Sohn, Dong-Hwan
    • YAKHAK HOEJI
    • /
    • v.56 no.2
    • /
    • pp.99-107
    • /
    • 2012
  • The protective effect of AI-1367 (Alnus japonica extract) on liver injury was investigated. Primary rat hepatocyte intoxication was induced by tert-butyl hydroperoxide (tBH), carbon tetrachloride ($CCl_4$), or D-glactosamine (D-GalN). Liver injury was induced by $CCl_4$, D-GalN or MCD (methionine choline deficient)-diet in mouse. The cellular leakage of lactate dehyrogenase and cell viability followed by the treatment of hepatotoxicants were significantly improved by AI-1367 treatment at a concentration range of 5~50 ${\mu}g/ml$ for tBH, 5~50 ${\mu}g/ml$ for D-GalN, and 5~100 ${\mu}g/ml$ for $CCl_4$, respectively. Treatment with AI-1367 (20, 10, 5 mg/kg, p.o.) on liver injury induced by subcutaneous injection of $CCl_4$ or D-GalN reduced significantly the levels of aspartate transaminase and alanine transaminase in serum. Histological observations revealed that fatty acid changes, hepatocyte necrosis and inflammatory cell infiltration in $CCl_4$ (D-GalN)-induced liver injury was improved by administration of AI-1367. AI-1367 treatment (10, 5, 2.5 mg/kg, p.o.) also significantly recovered the body weight change and serum levels of aspartate transaminase, alanine transaminase and triglyceride in liver injury induced by MCD diet. From these results, AI-1367 shows protective effects against tBH, $CCl_4$, D-GalN, or MCD diet-induced hepatotoxicity in vitro or in vivo.

Thermodynamics of the Formation of Polymethylbenzene-Halogens Charge Transfer Complexes (IV) (폴리메틸벤젠과 할로겐 사이의 전하이동 착물생성에 관한 열역학적 연구 (제4보))

  • Oh Chun Kwun;Jeong Rim Kim;Je Ha Yang
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.5
    • /
    • pp.274-281
    • /
    • 1982
  • Ultraviolet spectrophotometric investigation have been carried out on the systems of pentamethylbenzene and hexamethylbenzene with iodine and iodine monochloride in carbon tetrachloride. The results reveal the formation of the one to one molecular complexes. The equilibrium constants were obtained in consideration of that absorption maxima due to the formation of the charge transfer complexes shift to blue with the increasing temperature. Thermodynamic parameters for the formation of the charge transfer complexes were calculated from these values. These results indicate that the complex formed between polymethylbenzene and iodine monochloride is more stable than that in the case of iodine. This may be a measure of their relative acidities toward polymethylbenzene, which is explained in terms of the relative electronegativities of halogen atoms. These results combined with previous studies of this series indicated that ${\lambda}_{max}$ shift to red with the increasing number of methyl groups on benezene ring and that the relative stabilities of these complexes increase in the order, Benzene < Toluene < Xylene < Durene < Mesitylene < Pentamethylbenzene < Hexamethylbenzene. The reason for the order found is thus additionally discussed.

  • PDF

The Effect of Pressure on the Iododestannylation between Tetramethyltin and Iodine (Tetramethyltin과 Iodine 사이의 Iododestannylation에 대한 압력의 영향)

  • Kwun, Oh Cheun;Lee, Young Hoon;Jeun, In Seung
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.5
    • /
    • pp.350-355
    • /
    • 1995
  • UV spectrophotometric investigation has been carried out on the system of charge-transfer (CT) complex with iodine and tetramethyltin in carbon tetrachloride solvent. The transient CT absorption spectrum can be observed in ${\lambda}_{max}=270nm$ and the subsequent disappearance of CT absorption spectrum was accompained by the cleavage of tetramethyltin with iodine (iododestannylation). From there, the rate constants for the iododestannylation were determined at 10, 20 and $35^{\circ}C$ up to 1200 bar and the reaction rates were increased with increasing temperature and pressure. From these rate constants, the values of the activation parameters (${\Delta}V^{\neq},\;{\Delta}{\beta}^{\neq},\;{\Delta}H^{\neq}\;and\;{\Delta}S^{\neq}$) were obtained and from these values discussed in terms of solvent structure variation of transition state and mechanism. From these results, it was found that the reaction is followed with $S_F2$ mechanism and weakened $S_F2$ mechanism nature by increasing pressure.

  • PDF

Hepatoprotective activity of terpenoids and terpenoid fractions of Scoparia dulcis L

  • Krishnamurthy, Praveen Thaggikuppe;Bajaj, Jitendra;Sharma, Abhishek;Manimaran, Sellappan;Ravanappa, Prashantha Kumar Bommenahalli;Pottekad, Vijayan
    • Advances in Traditional Medicine
    • /
    • v.10 no.4
    • /
    • pp.263-270
    • /
    • 2010
  • Scoparia dulcis L. is widely used in the traditional system of medicine for treating liver ailments. In the present study the terpenoids and terpenoid fractions isolated from 1:1:1 petroleum ether, diethyl ether and methanol (PDM) extract of Scoparia dulcis L. were tested for their in vitro 1, 1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity. Selected samples from the assay were further tested for their in vitro hepatoprotective activity against $CCl_4$ induced hepatotoxicity in freshly isolated rat hepatocytes. In the in vitro antioxidant study, fractions 7, 11, 13, 14, and 15 and PDM extract show the DPPH radical scavenging activity. The phytochemical screening of all these fractions show the presence of terpenoids. In the in vitro hepatoprotective study all these fractions and the PDM extract significantly prevent the $CCl_4$ induced changes in the aspartate aspartate amino transferase, alanine amino transferase and alkaline phosphatase levels (p < 0.05). The above results are comparable with the standard, silymarin. The results of the study indicate that, the PDM extract of Scoparia dulcis L. possesses potential hepatoprotective activity and this may be attributed to its free radical scavenging potential, which in turn may be attributed to the presence of terpenoids.

The Serum or Urinary Levels of Cyclohexane Metabolites in Liver Damaged Rats

  • Joh Hyun-Sung
    • Biomedical Science Letters
    • /
    • v.12 no.3
    • /
    • pp.241-247
    • /
    • 2006
  • To evaluate an effect of pathological liver damage on the cyclohexane (CH) metabolism, rats were pretreated with 50% carbon tetrachloride $(CCl_4)$ dissolved in olive oil (0.1ml/100g body weight) 10 or 17 times intraperitoneally at intervals of every other day. To these liver damaged animals, CH (a single dose of 1.56g/kg body weight, i.p.) was administered at 48hr after the last injection of $CCl_4$. The CH metabolites; cyclohexanol (CH-ol), cyclohexane-l,2-diol (CH-l,2-diol) and cyclohexane-l,4-diol (CH-l,4-diol) and cyclohexanone (CH-one) were detected in the urine of CH treated rats. After CH treatment, the serum levels of CH-ol and CH-one were remarkably increased at 4 hr and then decreased at 8hr in normal group. Whereas in liver damaged rats, these CH metabolites were higher at 8hr than at 4hr. The excretion rate of CH metabolites trom serum into urine was more decreased in liver damaged animals than normal group, with the levels of excretion rate being lower in $CCl_4$ 17 times injected animals than 10 times injected ones. It was interesting that the urinary concentration of CH metabolites was generally more increased in liver damaged animals than normal ones, and the increasing rate was higher in $CCl_4$ 17 times injected rats than 10 times injected ones. Taken all together, it is assumed that reduced urinary excretion rate of CH metabolites in liver damaged rats might be resulted from deteriorated hepatic and renal blood flow, and an increased urinary excretion amount of CH metabolites in liver damaged rats might be caused by reduced expiration amount of the metabolites due to lung damage.

  • PDF

EFFECTS OF NOVEL DITHIOL MALONATE DERIVATIVES ON LIVER LIPID PEROXIDATION AND ON MICROSOMAL ELECTRON TRANSPORT SYSTEM

  • Park, Keun-Hee;Lee, Jong-Wook
    • Toxicological Research
    • /
    • v.3 no.2
    • /
    • pp.97-110
    • /
    • 1987
  • The effects of 5 novel hepatotrophic agents, dithiol malonate derivatives (DMDs; DMD1-DMD5), on the liver microsomal lipid peroxidation induced by carbon tetrachloride $(CCl_4)$ and the correlations with the changes of microsomal electron transport system were investigated. All DMDs were found to inhibit the lipid peroxidation induced by $CCl_4$ in mice and rats as well in vitro liver microsomal system. Therefore, each DMD seemed to have direct mode of action on liver microsomes to inhibit the lipid peroxidation. As an ex vivo study, the induced lipid peroxidation by $CCl_4$ and the changes in electron transport system were determined with liver microsomes obtained from rats chronically treated with DMDs for 7 days. The induced lipid peroxide contents in liver microsomal system were lower in DMD1, DMD2 and DMD3 treated group, but higher in DMD4 and DMD5 group when compared to the control group. Cyt. p.450 contents in the microsomes were decreased by the treatment with DMD1, DMD2 and DMD3, but increased significantly by DMD4 with great extent and by DMD5 with less extent. The cyt. p-450 isozymes induced by treatment of DMD4 and DMD5 were identified as 3-methylcholanthrene (MC) type. The NADPH cyt. -C reductase activities of the microsomes treated with DMD1, DMD2, DMD4 and DMD5 were increased in the range of around 20% to 50%, but decreased with DMD3, All DMDs increased dyt. $-b_5$ content and did not alter NAdH-cyt, $-b_5$ reductase activities in the microsomes. In summary, the 5 novel hepatotrophic agents (DMDs) markedly protected against lipid peroxidation induced by $CCl_4$ in vivo and in vitro possibly through the mechanism of direct action on the liver microsomes. The degree of inhibition produced by DMDs on lipid peroxidation induced by $CCl_4$ seemed to coincide rather with cyt. p-450 contents than with other components of liver microsomal electron transport system including NADPH-cyt, -C reductase.

  • PDF

Effect of Allopurinol Pretreatment on the Liver Damage in $CCl_4$-treated Rat (흰쥐에 있어서 사염화탄소에 의한 간손상에 allopurinol의 영향)

  • 배지혜;윤종국;이상일
    • Toxicological Research
    • /
    • v.11 no.2
    • /
    • pp.247-252
    • /
    • 1995
  • To evaluate the effect of xanthine oxidase on liver injury by $CCl_4$, liver damage was induced both in allopurinol pretreated rats (500 mg/kg. ip) and control group by twice intraperitoneal injection of $CCl_4$ (0.1 ml/100 g body wt. 50% in olive oil) at interval of one day. Increases in the levels of serum alanine aminotransferase and liver weight/body weight (%) by $CCl_4$ were significantly smaller inallopurinol pretreated rats than in control whereas the hepatic microsomal glucose-6-pholphatase activities were significantly higher in allopurinol pretreated rats than control group by $CCl_4$ treatment. These results indicates that allopurinol pretreatment may reduce the liver damage in $CCl_4$ intoxicated rats. In rats either with $CCl_4$or not, hepatic type O xanthine oxidase activities were significantly reduced by allopurinol pretreatment and the increasing rate of these enzymes to each control was remarkably lower in allopurinol pretreated rats than control. Liver cytosolic protein contents and aniline hydroxylase, aminopyrine demethylase activities were higher in allopurinol pretreated rats than coirol rats when animals were treated with $CCl_4$. On the other hand, neither allopurinol pretreated nor $CCl_4$ treatment caused any significant changes in hepatic superoxide dismutase and catalase activities. Hepatic glutathione contents were higher in $CCl_4$-treated rats than control, but no significant changes were found in both between the allopurinol treated rats and $CCl_4$-treated rats pretreated with allopurinol, and glutathione and glutathione S-transferase activities were significantly reduced in $CCl_4$-treated rats than control whereas these enzyme activities showed on significant change in both between allopurinel treated and $CCl_4$-treated rats pretreated with allopurinol. It is concluded that xanthine oxidase reaction system augment $CCl_4$ induced liver injury via even oxygen free radical system.

  • PDF