• Title/Summary/Keyword: Carbon Steel Pipes

Search Result 86, Processing Time 0.018 seconds

Behavior of Elastic and Plastic Limit Loads of Thinned Elbows Observed During Real-Scale Failure Test Under Combined Load (감육엘보 실증실험에서의 탄성 및 소성 한계하중 거동 고찰)

  • Lee, Sung-Ho;Lee, Jeong-Keun;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1293-1298
    • /
    • 2010
  • In most power plants, wall thinning in carbon-steel pipes due to flow-accelerated corrosion is one of the major aging phenomena, and it reduces the load-carrying capacity of the piping system. Various types of wall-thinning defects were manufactured in real-scale elbows, and monotonic in-plane bending tests were performed under internal pressure to evaluate the failure behavior of the elbows. In this paper, the behavior of elastic and plastic limit leads of locally thinned elbows in a real-scale failure test is presented. The loads determined on the basis of TES (twice elastic slope) were considered to be the limit loads of locally thinned elbows so that the integrity of the thinned elbows could be maintained, even when a small amount of plastic deformation might have occurred.

Defect Detection of Carbon Steel Pipe Weld Area using Infrared Thermography Camera (적외선 열화상 카메라를 이용한 탄소강관 용접부 결함검출)

  • Kwon, DaeJu;Jung, NaRa;Kim, JaeYeol
    • Tribology and Lubricants
    • /
    • v.30 no.2
    • /
    • pp.124-129
    • /
    • 2014
  • The piping system accounts for a large portion of the machinery structure of a plant, and is considered as a very important mechanical structure for plant safety. Accordingly, it is used in most energy plants in the nuclear, gas, and heavy chemical industries. In particular, the piping system for a nuclear plant is generally complicated and uses the reactor and its cooling system. The piping equipment is exposed to diverse loads such as weight, temperature, pressure, and seismic load from pipes and fluids, and is used to transfer steam, oil, and gas. In ultrasound infrared thermography, which is an active thermography technology, a 15-100 kHz ultrasound wave is applied to the subject, and the resulting heat from the defective parts is measured using a thermography camera. Because this technique can inspect a large area simultaneously and detect defects such as cracks and delamination in real time, it is used to detect defects in the new and renewable energy, car, and aerospace industries, and recently, in piping defect detection. In this study, ultrasound infrared thermography is used to detect information for the diagnosis of nuclear equipment and structures. Test specimens are prepared with piping materials for nuclear plants, and the optimally designed ultrasound horn and ultrasound vibration system is used to determine damages on nuclear plant piping and detect defects. Additionally, the detected images are used to improve the reliability of the surface and internal defect detection for nuclear piping materials, and their field applicability and reliability is verified.

The Failure Analysis of Double Pipe for Insulation Used Power Plant by Grooving Corrosion (발전소용 이중보온용 강관의 홈부식(Grooving Corrosion)에 의한 파손 분석)

  • Ham, Jong-Oh;Park, Ki-Duck;Park, Sung-Jin;Sun, Il-Sik
    • Journal of Applied Reliability
    • /
    • v.15 no.3
    • /
    • pp.197-206
    • /
    • 2015
  • Failure analysis of pre-insulated pipe (SPPS 380, 400A) transporting high temperature water ($95{\sim}110^{\circ}C$) for a plant was carried out. The damaged area (${\Phi}5mm$) of pre-insulated pipe was found only on welds. The chemical composition of damaged pipe meets specification of carbon steel pipes for pressure service (KS D 3562). As results of microstructure analysis, crack propagated from outer to inside after pitting corrosion occurred on the outside surface. The non-metallic inclusion existed on the end of crack. And the non-metallic inclusion continuously and linearly formed along with the bond line of welds. Based on SEM-EDS analysis, the nonmetallic inclusions have higher Manganese (Mn) and Oxygen (O) content but sulfur (S) was not detected. As results of water quality analysis, hydrogen ion concentration and minerals like Fe, Mg, Si were in low level. But the content of dissolved oxygen (11.2 ppm) was slightly higher than that of standard. It seems that the cause of damaged pipe is grooving corrosion due to MnO inclusion formed on bond line and corrosion took place nearby welds.

Corrosion Control in Water Pipes by Adjusting the Corrosivity of Drinking Water : Effect and impact of the Corrosion Inhibitor (수돗물 부식성 제어를 통한 수도관 부식방지 : 부식억제제별 효과와 영향에 대한 분석)

  • Park, Young-Bog;Park, Ju-Hyun;Park, Eun-Hee;Lee, Jin-Suk;Kim, Hyen-Ton;Choi, Young-June;Chung, Hyen-Mi;Huh, Yu-jeong;Choi, In-cheol
    • Corrosion Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.303-310
    • /
    • 2016
  • The tap water used in Seoul was found to be corrosive. Its corrosivity was effectively reduced by that the additions of alkali agent such as NaOH, $Ca(OH)_2$ and corrosion inhibitor such as $H_3PO_4$. For the corrosion test, carbon steel pipe 50 m long was exposed to the drinking water produced by a pilot plant at $36.5^{\circ}C$, similar to the existing process where it takes about 20 minutes to reduce the initial chlorine content of 0.5 mg/L to 0.05 mg/L. $CO_2$ and $Ca(OH)_2$ was added not only to control the Langelier index (LI) above -1.0 and but also, to increase the duration time of residual chlorine by about 6 times. The persistence effect of residual chlorine was in the order of $H_3PO_4$ > $Ca(OH)_2$ > NaOH. Measurements of weight loss showed that corrosion inhibition was effective in order of $Ca(OH)_2$ > $H_3PO_4$ > NaOH > no addition, where the concentrations of $Ca(OH)_2$ and phosphate were 5 ~ 10 mg/L (as $Ca^{2+}$) and 1 mg/L (as $PO{_4}^{3-}$), respectively.

Behavior study of NC and HSC RCCs confined by GRP casing and CFRP wrapping

  • Sajedi, Fathollah;Shariati, Mahdi
    • Steel and Composite Structures
    • /
    • v.30 no.5
    • /
    • pp.417-432
    • /
    • 2019
  • This paper presents the results of axial compression testing and numerical modeling on reinforced concrete columns (RCC) with normal concrete (NC) and high-strength concrete (HSC), RCC confined by glass-fiber reinforced plastic pipes (GRP) casing as well as carbon fiber reinforced polymer (CFRP), The major parameters evaluated in the experiments were the effects of concrete type, GRP casing and CFRP wrapping, as well as the number of CFRP layers. 12 cylindrical RCC ($150{\times}600mm$) were prepared and divided into two groups, NC and HSC. Each group was divided into two parts; with and without GRP casing. In each part, one column was without CFRP strengthening layer, a column was wrapped with one CFRP layer and another column with two CFRP layers. All columns were tested under concentrated compression load. Numerical modeling was performed using ABAQUS software and the results of which were compared with experimental findings. A good agreement was found between the results. Results indicated that the utilization of CFRP wrapping and GRP casing improved compression capacity and ductility of RCC. The addition of one and two layer-FRP wrapping increased capacity in the NC group to an average of 18.5% and 26.5% and in the HSC group to an average of 10.2% and 24.8%. Meanwhile, the utilization of GRP casing increased the capacity of the columns by 3 times in the NC group and 2.38 times in the HSC group. The results indicated that although both CFRP wrapping and GRP casing increased confinement, the GRP casing gave more increase capacity and ductility of the RCC due to higher confinement. Furthermore, the confinement effect was higher on NC group.

Seismic behavior of deep-sea pipeline after global buckling under active control

  • Jianshuo Wang;Tinghao Meng;Zechao Zhang;Zhihua Chen;Hongbo Liu
    • Earthquakes and Structures
    • /
    • v.26 no.4
    • /
    • pp.261-267
    • /
    • 2024
  • With the increase in the exploitation depth of offshore oil and gas, it is possible to control the global buckling of deep-sea pipelines by the snake lay method. Previous studies mainly focused on the analysis of critical buckling force and critical temperature of pipelines under the snake-like laying method, and pipelines often suffer structural failure due to seismic disasters during operation. Therefore, seismic action is a necessary factor in the design and analysis of submarine pipelines. In this paper, the seismic action of steel pipes in the operation stage after global buckling has occurred under the active control method is analyzed. Firstly, we have established a simplified finite element model for the entire process cycle and found that this modeling method is accurate and efficient, solving the problem of difficult convergence of seismic wave and soil coupling in previous solid analysis, and improving the efficiency of calculations. Secondly, through parameter analysis, it was found that under seismic action, the pipe diameter mainly affects the stress amplitude of the pipeline. When the pipe wall thickness increases from 0.05 m to 0.09 m, the critical buckling force increases by 150%, and the maximum axial stress decreases by 56%. In the pipe soil interaction, the greater the soil viscosity, the greater the pipe soil interaction force, the greater the soil constraint on the pipeline, and the safer the pipeline. Finally, the pipeline failure determination formula was obtained through dimensionless analysis and verified, and it was found that the formula was accurate.