• Title/Summary/Keyword: Carbon Sink

Search Result 122, Processing Time 0.026 seconds

Environmental Impact Assessment for Development Projects Considering Carbon Sink and Sequestration(I) - Focused on a Solar Power Plant Development Project - (탄소흡수원을 고려한 개발사업 환경영향평가 방안(I) - 태양광발전소 건설사업 사례를 중심으로 -)

  • Hwang, Sang-Il;Park, Sun-Hwan
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.6
    • /
    • pp.625-631
    • /
    • 2010
  • The objective of this work was to investigate how carbon sink and sequestration of vegetation and soil in the development project area can impact the land use plan, in addition to carbon emission capacity of the development project when we conduct environmental impact assessment. Especially, we did this work for a development project of solar power plant which would be constructed in forest area. Through this work, we found that 1) the amount of carbon sink and sequestration largely decreased due to reduction of the green area, 2) in terms of carbon sink and sequestration, conservation of natural green area is better than construction of newly vegetated area, 3) biochar application into soil can become an alternative for increase of carbon sink, and 4) even though a solar power production does hugely reduce carbon emissions and offset the carbon sink and sequestration capacity from the forest, it is necessary to consider the public value of the forest(reduction of heat island, habitat etc.) in siting for development area.

Environmental Impact Assessment for Development Projects Considering Carbon Sink and Sequestration(II) - Focused on a Housing Redevelopment Project - (탄소흡수원을 고려한 개발사업 환경영향평가 방안(II) - 주택 재개발 사업을 중심으로 -)

  • Hwang, Sang Il;Park, Sun Hwan
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.1
    • /
    • pp.79-87
    • /
    • 2011
  • In this study, we investigated the effect of carbon sequestration and sink on the environmental impact assessment of a housing redevelopment project. Through the case study, we found that the amount of carbon sequestration and sink increased with the increase of the area of park and green space and, furthermore, the amount of carbon emission decreased slightly with implementation of district heating and renewable energy. Therefore, it is necessary for its land use plan to be established to minimize the amount of net carbon emission, taking account of both the amount of present carbon emission and the amount of the future carbon sink, sequestration, and emission.

Development of the Forest Carbon Sink Index on Afforestation and Reforestation Activities (신규조림·재조림 활동의 산림탄소흡수원 지수 개발)

  • Song, Minkyung;Bae, Jae Soo;Seol, Mi Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.137-146
    • /
    • 2014
  • We have developed the Forest Carbon Sink Index on afforestation and reforestation activities, a regulation stated in article 26 of the 'Law on the maintenance and enhancement of carbon sink (Carbon Sink Law)', which took effect on March, 2013. According to the legal purpose to evaluate the performance of individual forest carbon offset projects and to compare each other at a certain point, values of the forest carbon sink index were calculated by the scoring method. Three criteria were established based on the Carbon Sink Law: 'Carbon' (real greenhouse gas reduction), 'Human' (socio-economic effect) and 'Nature' (environmental effect). Continuously, 9 indicators from the three criteria were selected by top-down approach; the adequacy of each criteria and indicators were reviewed through on-line Delphi survey; and finally weighted value of each criteria and indicators were assigned. To reflect the characteristics of the domestic forest carbon offset projects, which focus on corporate social responsibility-typed projects, we applied the score weighting method to minimize gaps among criteria and ones among indicators. After applying our newly developed forest carbon sink index to five domestic forest carbon offset projects, we could confirm that the criteria of 'Human' and 'Nature', which criteria are in relatively low weight, can play a role as an actual incentive to reduce negative socio-economic and environmental impacts. Based on performance evaluation of the five forest carbon offset project by the forest carbon sink index, the best or good performance project developers could be rewarded, and further the performance evaluation would work as an incentive to stimulate the involvement of domestic project developers in the field of forest carbon offset project.

Environmental Impact Assessment for Development Projects Considering Carbon Sink and Sequestration(III) - Focused on a Bogeumjari Housing Project - (탄소흡수원을 고려한 개발사업 환경영향평가 방안(III) - 보금자리주택 사업을 중심으로 -)

  • Hwang, Sang Il;Park, Sun Hwan
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.2
    • /
    • pp.235-248
    • /
    • 2011
  • In this study, we investigated the effect of carbon sequestration and sink on the environmental impact assessment of a Bogeumjari Housing Project. Through the case study, we found that, if the project is implemented, the amount of carbon stock tends to decrease greatly while as the amount of the carbon emission tends to greatly increase. Furthermore, we found that the future land use should be planned in detail in order to maintain the soil carbon stock prior to development. Also, enlargement of undeveloped forest land area would be more efficient than that of newly planted area in terms of carbon sequestration.

A Review on the Carbon Exchange Estimation in Fruit Orchard (과수 재배지의 탄소 수지 평가 연구 동향)

  • Choi, Eun Jung;Suh, Sang Uk;Jeong, Hyun Cheol;Lee, Jong Sik;Kim, Gun Yeob;So, Kyu Ho
    • Journal of Climate Change Research
    • /
    • v.5 no.4
    • /
    • pp.339-348
    • /
    • 2014
  • Agro-ecosystem plays an important role in the mitigation of atmospheric $CO_2$ concentration through photosynthesis and soil carbon fixation. The perennial crops have capacity of carbon accumulation because they have lived for years in the same position. Carbon dioxide fixation occurs in the fruit orchard by photosynthesis and soil carbon sequestration. The objectives of this review are to introduce the fruit orchard as a carbon dioxide sink and to summarize the methods that measure $CO_2$ flux in the orchard. There are three difference methods (chamber, biomass, and eddy covariance method) to measure $CO_2$ exchanges on sites. However, there is no standard method suitable for fruit cultivation condition in Korea. Thus the standard method have to be developed in order to exactly estimate the carbon accumulation. In foreign studies, the carbon assessments were conducted in apple, peach, olive, grape orchard and so on. On the other hand the estimation of $CO_2$ exchange was carried out for apple and mandarine orchard in Korea. According to these results, fruit orchard is a $CO_2$ sink even though amount of carbon accumulation is smaller than the forest. To introduce certainly fruit orchard as greenhouse gas sink, long-term monitoring and further study have to be conducted under each planting condition.

Method for Assessing Forest Carbon Sinks by Ecological Process-Based Approach - A Case Study for Takayama Station, Japan

  • Lee, Mi-Sun
    • The Korean Journal of Ecology
    • /
    • v.26 no.5
    • /
    • pp.289-296
    • /
    • 2003
  • The ecological process-based approach provides a detailed assessment of belowground compartment as one of the major compartment of carbon balance. Carbon net balance (NEP: net ecosystem production) in forest ecosystems by ecological process-based approach is determined by the balance between net primary production (NPP) of vegetation and heterotrophic respiration (HR) of soil (NEP=NPP-HR). Respiration due to soil heterotrophs is the difference between total soil respiration (SR) and root respiration (RR) (HR=SR-RR, NEP=NPP-(SR-RR)). If NEP is positive, it is a sink of carbon. This study assessed the forest carbon balance by ecological process-based approach included belowground compartment intensively. The case study in the Takayama Station, cool-temperate deciduous broad-leaved forest was reported. From the result, NEP was estimated approximately 1.2 t C $ha^{-1} yr^{-1}$ in 1996. Therefore, the study area as a whole was estimated to act as a sink of carbon. According to flux tower result, the net uptake rate of carbon was 1.1 t C $ha^{-1} yr^{-1}$.

Characteristics of CMP-PLA Heatsink Materials with Carbon Nanotube Contents (탄소나노튜브 양에 따른 CMP-PLA 방열 소재의 특성)

  • Kim, Young-Gon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.924-927
    • /
    • 2013
  • In this study, we proposed CMP-PLAs to replace the Al heat sinks as heat sink materials, and investigated heat dissipation characteristics of the LED lighting devices using them. The crystallinity of the proposed CMP-PLA heat sinks decreased with increasing carbon nanotube contents in CMP-PLA. However, the thermal conductivity was improved with the increase of the carbon nanotube contents. The heat dissipation characteristics of the LED lighting devices using CMP-PLA heat sinks was improved with increasing carbon nanotube contents in CMP-PLA. For the LED lighting devices using CMP-PLA heat sinks with 40% carbon nanotube contents, the initial temperature measured at the heat sink plate was $27^{\circ}C$, which increased as time, and it was saturated around $56^{\circ}C$ after an hour. The LED lighting devices using CMP-PLA heat sinks are expected to be functional materials that can reduce their weight and improve their electric properties, compared to those using existing Al heat sinks.

Study for grain-filling of rice using 13C labeling flow-metabolome analysis

  • Okamura, Masaki;Hirai, Masami Yokota;Sawada, Yuji;Okamoto, Mami;Arai-Sanoh, Yumiko;Yoshida, Hiroe;Mukouyama, Takehiro;Adachi, Shunsuke;Fushimi, Erina;Yabe, Shiori;Nakagawa, Hiroshi;Kobayashi, Nobuya;Kondo, Motohiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.59-59
    • /
    • 2017
  • Rice (Oryza sativa L.) is the most important crop and its yield must be improved to feed the increasing global population. Recently developed high-yielding varieties with extra-large sink capacity often have a problem in unstable grain-filling. Therefore, understanding limiting factors for improving grain-filling and controlling them are essential for further improvement of rice grain yield. However, since grain-filling rate was determined by complex sink-source balance, the ability of grain-filling was very difficult to evaluate. Source ability for 'grain' was not only determined by the ability of carbon assimilation in leaves, but also that of carbon translocation from leaves to panicles. Sink strength was determined by the complex carbon metabolism from sucrose degradation to starch synthesis. Hence, to evaluate the grain-filling ability and determine its regulatory steps, the whole picture of carbon flow from photosynthesis at leaves to starch synthesis at grains must be revealed in a metabolite level. In this study, the yield and grain growth rate of three high-yielding varieties, which show high sink capacity commonly, were compared. Momiroman showed lower grain filling rate and slower grain growth rate than the other varieties, Hokuriku 193 and Tequing. To clarify the limiting point in the carbon flow of Momiroman, $CO_2$ labeled by stable isotope ($^{13}C$) was fed to three varieties during ripening period. The ratio of $^{13}C$ left in the stem was higher in Momiroman 24 hours after feeding, suggesting inefficient carbon translocation of Momiroman. More interestingly, $^{13}C$ translocation from soluble fraction to insoluble one in the grain seemed to be slower in Momiroman. To get the further insight in a metabolite level, we are now trying the $^{13}C$ labeling metabolome analysis in the developing grains.

  • PDF

The Responses of a Small Lake Watershed to an Inorganic Carbon Cycle (무기탄소 순환에 대한 소규모 호수 유역의 반응)

  • Cho, Youngil
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.5
    • /
    • pp.610-617
    • /
    • 2013
  • Investigating the budgets of alkalinity and dissolved inorganic carbon (DIC) in lake water systems is significant for the examination of the behavior of a lake as a sink or a source with respect to the circulation of inorganic carbon chemistry. Budgets of total alkalinity ($Alk_T$) and DIC in Onondaga Lake, which was polluted by chronic calcium (Ca) loading in spite of the closure of soda ash ($Na_2CO_3$) facility, were determined by the analyses of inorganic carbon chemistry in tributary stream channels linked to the lake. AlkT and DIC fluxes of Onondaga Creek and Ninemile Creek occupied 65% and 54%, respectively, as larger tributary streams in comparison with other tributaries as well as different input sources. Budget calculations indicate that 18% of AlkT and 11% of DIC inputs to Onondaga Lake, respectively, remained immobilized in the Lake. This suggests that Ca chronically leached had been precipitated with inorganic carbon or remineralized by secondary mineral formation during the experimental period. In this study, the assumed mass balance calculation in Onondaga Lake with tributary streams resulted in exhibiting that the lake played a role of the sink for the inorganic carbon cycle.

A study on the design and cooling of the heat sink with hybrid structure of conductive polymer composite and metal (열전도성 고분자 복합소재/금속 소재 하이브리드 구조의 방열기구 설계 및 방열특성에 관한 연구)

  • Yoo, Yeong-Eun;Kim, Duck Jong;Yoon, Jae Sung;Park, Si-Hwan
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.14-19
    • /
    • 2016
  • Thermally or electrically conductive filler reinforced polymer composites are extensively being developed as the demand for light weight material increases rapidly in industiral applications need good conductivity such as heat sink of the electronics or light. Carbon or ceramic materials like graphite, carbon nanotube or boron nitride are typical conductive fillers with good thermal or electical conductivity. Using these conductive fillers, the polymer composites in the market show wide range of thermal conductivity from approximately 1 W/mK to 20 W/mK, which is quite enhanced considering the thermal conductivity lower than 0.5 W/mK for most polymeric materials. The practical use of these composites, however, is yet limited to specific applications because most composites are still not conductive enough or too difficult to process, too brittle, too expensive for higher conductivity. For practical use of conductive composite, the thermal conductivity required depending on the heat releasing mode are studied first for simplified unit cooling geometry to propose thermal conductivities of the composites for reasonable cooling performance comparing with the metal heat sink as a reference. Also, as a practical design for heat sink based on polymer composite, composite and metal sheet hybrid structures are investigated for LED lamp heat sink and audio amplication module housing to find that this hybrid structure can be a good solution considering all of the cooling performance, manufacturing, mechanical performance, cost and weight.