• Title/Summary/Keyword: Carbon Sheets

Search Result 399, Processing Time 0.026 seconds

Synthesis of graphene nano-sheet without catalysts and substrates using fullerene and spark plasma sintering process

  • Jun, Tae-Sung;Park, No-Hyung;So, Dea-Sup;Lee, Joon-Woo;Lim, Hak-Sang;Ham, Heon;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.1
    • /
    • pp.27-30
    • /
    • 2013
  • Catalyst-free graphene nano-sheets without substrates have been synthesized using fullerene and a high direct current (dc) pulse in the spark plasma sintering (SPS) process. Graphene nano-sheets were synthesized directly in the gas phase of carbon atoms which are generated from fullerene at a temperature of $600^{\circ}C$. Characterization has been carried out by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD).

Axial behavior of FRP-wrapped circular ultra-high performance concrete specimens

  • Guler, Soner
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.709-722
    • /
    • 2014
  • Ultra-High Performance Concrete (UHPC) is an innovative new material that, in comparison to conventional concretes, has high compressive strength and excellent ductility properties achieved through the addition of randomly dispersed short fibers to the concrete mix. This study presents the results of an experimental investigation on the behavior of axially loaded UHPC short circular columns wrapped with Carbon-FRP (CFRP), Glass-FRP (GFRP), and Aramid-FRP (AFRP) sheets. Six plain and 36 different types of FRP-wrapped UHPC columns with a diameter of 100 mm and a length of 200 mm were tested under monotonic axial compression. To predict the ultimate strength of the FRP-wrapped UHPC columns, a simple confinement model is presented and compared with four selected confinement models from the literature that have been developed for low and normal strength concrete columns. The results show that the FRP sheets can significantly enhance the ultimate strength and strain capacity of the UHPC columns. The average greatest increase in the ultimate strength and strain for the CFRP- and GFRP-wrapped UHPC columns was 48% and 128%, respectively, compared to that of their unconfined counterparts. All the selected confinement models overestimated the ultimate strength of the FRP-wrapped UHPC columns.

CFRP strengthening of steel columns subjected to eccentric compression loading

  • Keykha, Amir Hamzeh
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.87-94
    • /
    • 2017
  • Steel structures often require strengthening due to the increasing life loads, or repair caused by corrosion or fatigue cracking. Carbon Fiber Reinforced Polymers (CFRP) is one of the materials used to strengthen steel structures. Most studies on strengthening steel structures have been carried out on steel beams and steel columns under centric compression load. No independent article, to the author's knowledge, has studied the effect of CFRP strengthening on steel columns under eccentric compression load, and it seems that there is a lack of understanding on behavior of CFRP strengthening on steel columns under eccentric compression load. However, this study explored the use of adhesively bonded CFRP flexible sheets on retrofitting square hollow section (SHS) steel columns under the eccentric compression load, using numerical investigations. Finite Element Method (FEM) was employed for modeling. To determine ultimate load of SHS steel columns, eight specimens with two types of section (Type A and B), strengthened using CFRP sheets, were analyzed under different coverage lengths, the number of layers, and the location of CFRP composites. Two specimens were analyzed without strengthening (control) to determine the increasing rate of the ultimate load in strengthened steel columns. ANSYS was used to analyze the SHS steel columns. The results showed that the CFRP composite had no similar effect on the slender and stocky SHS steel columns. The results also showed that the coverage length, the number of layers, and the location of CFRP composites were effective in increasing the ultimate load of the SHS steel columns.

Strength Analysis of Joint Between Steel Plate and CFRP Laminated Splice Plates Patched by Adhesive (접착제를 사용한 CFRP와 강재 이음부의 강도 해석)

  • Park, Dae-Yong;Lee, Sang-Youl;Chang, Suk-Yoon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.13-19
    • /
    • 2011
  • This paper presents the stress distribution of the damaged butt joint of steel plate using CFRP laminates when the flange in tension zone of steel box girder is welded by butt welding. When CFRP sheets are patched on tension flange of steel-box girder, the stress distribution of a vertical and normal direction on damaged welding part is shown as parameters such as a variation of the thickness of adhesive, the overlap length with steel, and the modulus of elasticity of CFRP sheets. For the study, we wrote the computer program using the EAS(Enhanced assumed strain) finite element method for plane strain that has a very fast convergency and exact stress for distorted shape.

Seismic rehabilitation of substandard RC columns with partially deteriorated concrete using CFRP composites

  • Hou, Dongxu;Wu, Zhimin;Zheng, Jianjun;Cui, Yao
    • Computers and Concrete
    • /
    • v.15 no.1
    • /
    • pp.1-20
    • /
    • 2015
  • Many existing reinforced concrete (RC) columns in structures tend to become substandard RC ones due to updated standards or environmental changes. These substandard columns may alter the behaviors of the whole structure and therefore are in urgent need of seismic retrofitting. Owing to their superior advantages, carbon fiber reinforced polymer (CFRP) composites are widely used to retrofit RC columns. The applications mainly focus on various substandard RC columns, but few deals with substandard columns with deteriorated concrete, especially damaged by earthquake. The purpose of this paper is to investigate the seismic behaviors of CFRP reinforced partially deteriorated RC columns and to evaluate the effect of CFRP sheets on them. Six flexure-dominant columns were tested under a constant axial load and transverse cyclic displacements. It is found that the seismic behaviors of partially deteriorated columns can be recovered by wrapping CFRP sheets on them. Numerical analysis is then conducted using finite element methods and verified with experimental results. The effects of the axial load ratio, the ratio of the thickness of CFRP sheet to the column diameter, and the slenderness ratio on the seismic behaviors of CFRP reinforced RC columns are evaluated. Finally, a method is proposed to determine the required thickness of CFRP sheet.

Effect of Mn Addition on the Microstructural Changes and Mechanical Properties of C-Mn TRIP Steels (C-Mn TRIP강의 미세조직 변화와 기계적 성질에 미치는 Mn 첨가의 영향)

  • Hong, H.;Lee, O.Y.;Song, K.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.4
    • /
    • pp.205-210
    • /
    • 2003
  • Various types of high strength steel sheets were usually used for improving the automobile safety and fuel efficiency by reducing the vehicle weight. The present study aimed to develop the TRIP (transformation induced plasticity) aided high-strength low carbon steel sheets by using a reverse transformation process. The 0.1C-4~8Mn steels were reverse-transformed by slow heating to intercritical temperature region and then furnace cooled to the room temperature. Granular type retained austenite was observed in 4Mn steel and lath type retained austenite was also observed in 6~8Mn steel. The results show that the 6Mn steel under reverse transformed at $625^{\circ}C$ for 6 hrs has maximum elongation up to 39%. The optimum strength-elongation combination was 3,888 ($kg/mm^2{\times}%$) when the 8Mn steel was reverse transformed at $625^{\circ}C$ for 12 h.

Experimental investigations and FE simulation of exterior BCJs retrofitted with CFRP fabric

  • Halahla, Abdulsamee M.;Rahman, Muhammad K.;Al-Gadhib, Ali H.;Al-Osta, Mohammed A.;Baluch, Mohammed H.
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.337-354
    • /
    • 2019
  • This paper presents the results of experimental and numerical studies conducted to investigate the behavior of exterior reinforced concrete beam column joints (BCJ) strengthened by using carbon fiber reinforced polymer (CFRP) sheets. Twelve reinforced concrete beam-column joints (BCJ) were tested in an experimental program by simulating the joints in seismically deficient old buildings. One group of BCJs was designed to fail in flexure at the BCJ interface, and the second group was designed to ensure joint shear failure. One specimen in each set was -retrofitted with CFRP sheet wrapped diagonally around the joint. The specimens were subjected to both monotonic and cyclic loading up to failure. 3D finite element simulation of the BCJs tested in the experimental program was carried out using the software ABAQUS, adopting the damage plasticity model (CDP) for concrete. The experimental results showed that retrofitting of the shear deficient, BCJs by CFRP sheets enhanced the strength and ductility and the failure mode changed from shear failure in the joints to the desired flexural failure in the beam segment. The FE simulation of BCJs showed a good agreement with the experimental results, which indicated that the CDP model could be used to model the problems of the monotonic and cyclic loading of beam-column reinforced concrete joints.

CFRP strengthening of steel beam curved in plan

  • Keykha, Amir Hamzeh
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.637-648
    • /
    • 2021
  • Nowadays, one of the practical, fast and easy ways to strengthen steel elements is the use of Carbon Fiber Reinforced Polymer (CFRP). Most previous research in the CFRP strengthening of steel members has carried out on straight steel members. The main difference between horizontal curved beams and straight beams under vertical load is the presence of torsional moment in the horizontal curved beams. In the other words, the horizontal curved beams are analyzed and designed for simultaneous internal forces included bending moment, torsional moment, and shear force. The horizontal curved steel beams are usually used in buildings, bridges, trusses, and others. This study explored the effect of the CFRP strengthening on the behavior of the horizontal curved square hollow section (SHS) steel beams. Four specimens were analyzed, one non-strengthened curved steel beam as a control column and three horizontal curved steel beams strengthened using CFRP sheets (under concentrated load and uniform distributed load). To analyze the horizontal curved steel beams, three dimensional (3D) modeling and nonlinear static analysis methods using ANSYS software were applied. The results indicated that application of CFRP sheets in some specific locations of the horizontal curved steel beams could increase the ultimate capacity of these beams, significantly. Also, the results indicated when the horizontal curved steel beams were under distributed load, the increase rate in the ultimate capacity was more than in the case when these beams were under concentrated load.

A study on the seismic behavior of Reinforced Concrete (RC) wall piers strengthened with CFRP sheets: A pushover analysis approach

  • Fatemeh Zahiri;Ali Kheyroddin;Majid Gholhaki
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.419-437
    • /
    • 2023
  • The use of reinforced concrete (RC) shear walls (SW) as an efficient lateral load-carrying system has gained recent attention. However, creating openings in RC shear walls is unavoidable due to architectural requirements. This reduces the walls' strength and stiffness, resulting in the development of wall piers. In this study, the cyclic behavior of RC shear walls with openings, reinforced with carbon fiber reinforced polymer (CFRP) sheets in various patterns, was numerically investigated. Finite element analysis (FEA) using ABAQUS software was employed. Additionally, the retrofitting of sub-standard buildings (5, 10, and 15-story structures) designed based on the old and new versions of the Iranian Code of Practice for Seismic-Resistant Structures was evaluated. Nonlinear static analyses, specifically pushover analyses, were conducted on the structures. The best pattern of CFRP wrapping was determined and utilized for retrofitting the sub-standard structures. Various structural parameters, such as load-carrying capacity, ductility, stress contours, and tension damage contours, were compared to assess the efficiency of the retrofit solution. The results indicated that the load-carrying capacity of the sub-standard structures was lower than that of standard ones by 57%, 69%, and 67% for 5, 10, and 15-story buildings, respectively. However, the retrofit solution utilizing CFRP showed promising results, enhancing the capacity by 10-25%. The retrofitted structures demonstrated increased yield strength, ultimate strength, and ductility through CFRP wrapping and effectively prevented wall slipping.

Modeling of nonlinear cyclic response of shear-deficient RC T-beams strengthened with side bonded CFRP fabric strips

  • Hawileh, Rami A.;Abdalla, Jamal A.;Tanarslan, Murat H.;Naser, Mohannad Z.
    • Computers and Concrete
    • /
    • v.8 no.2
    • /
    • pp.193-206
    • /
    • 2011
  • The use of Carbon Fiber Reinforced Polymers (CFRP) to strengthen reinforced concrete beams under bending and shear has gained rapid growth in recent years. The performance of shear strengthened beams with externally bonded CFRP laminate or fabric strips is raising many concerns when the beam is loaded under cyclic loading. Such concerns warrant experimental, analytical and numerical investigation of such beams under cyclic loading. To date, limited investigations have been carried out to address this concern. This paper presents a numerical investigation by developing a nonlinear finite element (FE) model to study the response of a cantilever reinforced concrete T-beam strengthened in shear with side bonded CFRP fabric strips and subjected to cyclic loading. A detailed 3D nonlinear finite element model that takes into account the orthotropic nature of the polymer's fibers is developed. In order to simulate the bond between the CFRP sheets and concrete, a layer having the material properties of the adhesive epoxy resin is introduced in the model as an interface between the CFRP sheets and concrete surface. Appropriate numerical modeling strategies were used and the response envelope and the load-displacement hysteresis loops of the FE model were compared with the experimental response at all stages of the cyclic loading. It is observed that the responses of the FE beam model are in good agreement with those of the experimental test. A parametric study was conducted using the validated FE model to investigate the effect of spacing between CFRP sheets, number of CFRP layers, and fiber orientation on the overall performance of the T-beam. It is concluded that successful FE modeling provides a practical and economical tool to investigate the behavior of such strengthened beams when subjected to cyclic loading.