• 제목/요약/키워드: Carbon Sheets

검색결과 399건 처리시간 0.038초

Behavior of FRP-reinforced steel plate shear walls with various reinforcement designs

  • Seddighi, Mehdi;Barkhordari, Mohammad A.;Hosseinzadeh, S.A.A.
    • Steel and Composite Structures
    • /
    • 제33권5호
    • /
    • pp.729-746
    • /
    • 2019
  • The nonlinear behavior of single- and multi-story steel plate shear walls (SPSWs) strengthened with three different patterns of fiber reinforced polymer (FRP) laminates (including single-strip, multi-strip and fully FRP-strengthened models) is studied using the finite element analysis. In the research, the effects of orientation, width, thickness and type (glass or carbon) of FRP sheets as well as the system aspect ratio and height are investigated. Results show that, despite an increase in the system strength using FRP sheets, ductility of reinforced SPSWs is decreased due to the delay in the initiation of yielding in the infill wall, while their initial stiffness does not change significantly. The content/type/reinforcement pattern of FRPs does affect the nonlinear behavior characteristics and also the mode and pattern of failure. In the case of multi-strip and fully FRP-strengthened models, the use of FPR sheets almost along the direction of the infill wall tension fields can maximize the effectiveness of reinforcement. In the case of single-strip pattern, the effectiveness of reinforcement is decreased for larger aspect ratios. Moreover, a relatively simplified and approximate theoretical procedure for estimating the strength of SPSWs reinforced with different patterns of FRP laminates is presented and compared with the analytical results.

Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach

  • Rajabi, Javad;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • 제23권5호
    • /
    • pp.361-376
    • /
    • 2019
  • In this research, bending analysis of a micro sandwich skew plate with isotropic core and piezoelectric composite face sheets reinforced by carbon nanotube on the elastic foundations are studied. The classical plate theory (CPT) are used to model micro sandwich skew plate and to apply size dependent effects based on modified strain gradient theory. Eshelby-Mori-Tanaka approach is considered for the effective mechanical properties of the nanocomposite face sheets. The governing equations of equilibrium are derived using minimum principle of total potential energy and then solved by extended Kantorovich method (EKM). The effects of width to thickness ratio and length to width of the sandwich plate, core-to-face sheet thickness ratio, the material length scale parameters, volume fraction of CNT, the angle of skew plate, different boundary conditions and types of cores on the deflection of micro sandwich skew plate are investigated. One of the most important results is the reduction of the deflection by increasing the angle of the micro sandwich skew plate and decreasing the deflection by decreasing the thickness of the structural core. The results of this research can be used in modern construction in the form of reinforced slabs or stiffened plates and also used in construction of bridges, the wing of airplane.

CAE를 활용한 고강도강판(SPFH590)의 셰이빙 가공 시 클리어런스가 전단면 형상에 미치는 영향에 관한 연구 (A study on the effect of clearance on shear surfac shape during shaving processing of high strength steel plate (SPFH590) using CAE)

  • 성시명
    • Design & Manufacturing
    • /
    • 제18권2호
    • /
    • pp.23-28
    • /
    • 2024
  • The automobile industry is a wide range of related industries, including parts manufacturing and vehicle assembly, press processing is an essential element in making automobiles. Press processing is a processing method for metal sheets that has relatively high dimensional and shape precision and is suitable for mass production. It refers to processing by attaching a special tool, a mold, to a press machine. Recently, the automobile industry is attempting to reduce the weight of automobiles in order to reduce carbon emissions due to global warming, and the use of high-strength steel sheets, which are lighter than general structural steel sheets, is a natural trend. Shear processing is required to use high-strength steel, and the shape of the shear surface created by shear processing has a significant impact on the quality of the automobile. Therefore, various methods are being attempted to improve the share surface during shear processing. Among them, shaving processing is a method of shearing the primary shearing area again, and it is difficult to obtain an accurate answer because complex deformation occurs in the microscopic shear area. Therefore, in this study, the effect of machining allowance on shaving processing was analyzed using the finite element method using high-strength steel plate (SPFH590), and the differences were compared and examined through actual experiments under the same conditions.

DMA와 SEM을 사용한 반도전층 재료의 탄성특성과 평활도 측정 (Modulus Properties and Smoothness Measurement of Semiconducting Materials Using the DMA and SEM)

  • 양종석;이경용;최용성;박대희
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권10호
    • /
    • pp.443-448
    • /
    • 2005
  • To measure modulus, damping properties and smoothness of semiconducting materials in power cable, we have investigated those of semiconducting materials showed by changing the content of carbon black. Then they were produced as sheets after pressing for 20 minutes at 180[$^{\circ}C$] with a pressure of 200[kg/cm$^{2}$]. The content of conductive carbon black was the variable, and their contents were 20, 30 and 40[wt$\%$], respectively. The modulus and tans were measured by DMA 2980. The ranges of measurement temperature were from -50[$^{\circ}C$] to 100[$^{\circ}C$] and measurement frequency was 1[Hz3. The modulus of specimens was increased according to a increment of a carbon black content. And modulus was rapidly decreased at the glass transition temperature. The tans of specimens was decreased according to a increment of a carbon black content. The smoothness was measured by JSM-6400. EEA resin from SEM measurement was best the dispersion of carbon back in base resin.

탄소분말을 함유한 도전성 고분자 PTCR의 전기적 특성 (Electrical properties of conducting polymer PTCR containing carbon powders)

  • 김경종;이재원;김영혁;김성훈;최문석;이재신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.220-221
    • /
    • 2006
  • We investigated the electrical properties of polymer-carbon composite materials for temperature sensitive resistor applications. Cu/polymer/Cu sheets were fabricated by laminating low density polyethylene(LDPE) containing carbon powders. Weight ratio of carbon powder to LDPE was varied in a range of 0.9~2. With increasing the carbon concentration, the electrical resistance of the composite material was decreased from 0.75 to $0.08\;{\Omega}cm$. The composite layer showed a abrupt increase in the electrical resistance at $115^{\circ}C$ because of the softening of the polymer.

  • PDF

저탄소강판을 이용한 굽힘 가공에서 발생하는 꺽임현상에 대한 발생 기구 해석 (Analysis on the Mechanism of Fluting in the Bending of Low Carbon Steel Sheets)

  • 박기철;윤정봉
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.336-339
    • /
    • 2007
  • In order to investigate the cause of fluting in tangential bending of low carbon steel sheet, an analytic analysis, an experiment and a series of finite element analysis for bending process were done. The fluting in bended sheet was due to the yield point elongation of material. Due to the yield point elongation, unstable plastic hinge was occurred in course of bending of elastic perfectly plastic sheet. According to the analysis and computational results, lower yield point elongation than 5% was required to prevent fluting in $0.5{\sim}0.6t$ sheet in $15{\sim}20mm$ radius bending.

  • PDF

금속 기판 위에 성장한 탄소나노튜브 특성에 관한 연구 (Growth of carbon nanotubes on metal substrates using microwave plasma-enhanced chemical vapor deposition)

  • 김현숙;박성렬;양지훈;문상현;박종윤;박래준
    • 한국진공학회지
    • /
    • 제11권4호
    • /
    • pp.256-260
    • /
    • 2002
  • Carbon nanotubes on metal(SUS304) substrates were synthesized by using micro-wave plasma-enhanced chemical vapor deposition at $650^{\circ}C$ with gas mixture CH$_4$(11%) and H$_2$(89%). Their structure was investigated by scanning electron microscopy and transmission electron microscopy. Raman spectroscopy was also used to justify the structure and crystallinity of graphite sheets. High-resolution transmission electron microscopy images clearly showed carbon nanotubes to be multwalled. The measured turn-on field and current density obtained from I-V measurement were 4.4 V/$\mu \textrm{m}$ and $8.4\times10^1\mu\textrm{A}/\textrm{cm}^2$, respectively.

쉬트형 FRP와 콘크리트의 부착특성에 관한 실험적 연구 (Experimental Study on the Bond Charateristics for FRP Sheet-Concrete Interface)

  • 고훈범;고만영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.361-364
    • /
    • 2006
  • In this study, six specimens were prepared for two type FRP sheets(carbon and polyacetal) to evaluate the behavior of FRP-concrete interfacial bond. A direct tensile test was conducted and the test results show that fiber type influences both bond strength and the shape of strain distribution. The failure mode for carbon type specimens seems to bond failure between concrete and FRP, but for polyacetal type indicates interface failure between FRP and expoxy. The local bond stress-slip relations were obtained from test results, and it was shown good shape for the polyacetal type. But for the carbon type it was scattered.

  • PDF

Graphene Based Nano-electronic and Nano-electromechanical Devices

  • Lee, Sang-Wook
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.13-13
    • /
    • 2011
  • Graphene based nano-electronic and nano-electromechanical devices will be introduced in this presentation. The first part of the presentation will be covered by our recent results on the fabrication and physical properties of artificially twisted bilayer graphene. Thanks to the recently developed contact transfer printing method, a single layer graphene sheet is stacked on various substrates/nano-structures in a controlled manner for fabricating e.g. a suspended graphene device, and single-bilayer hybrid junction. The Raman and electrical transport results of the artificially twisted bilayer indicates the decoupling of the two graphene sheets. The graphene based electromechanical devices will be presented in the second part of the presentation. Carbon nanotube based nanorelay and A new concept of non-volatile memory based on the carbon nanotube field effect transistor together with microelectromechanical switch will be briefly introduced at first. Recent progress on the graphene based nano structures of our group will be presented. The array of graphene resonators was fabricated and their mechanical resonance properties are discussed. A novel device structures using carbon nanotube field effect transistor combined with suspended graphene gate will be introduced in the end of this presentation.

  • PDF

0.14C-6.5Mn 합금강의 미세조직과 잔류오스테나이트 형성에 미치는 역변태처리의 영향 (Effect of Reverse Transformation on the Microstructure and Retained Austenite Formation of 0.14C-6.SMn Alloy Steel)

  • 송기홍;이오연
    • 열처리공학회지
    • /
    • 제13권4호
    • /
    • pp.253-258
    • /
    • 2000
  • The present study aimed to develop the TRIP(transformation induced plasticity) aided high strength low carbon steel sheets using reverse transformation process. The cold-rolled 0.14C-6.5Mn steel was reverse-transformed by slow heating to intercritical temperature region and air cooling to room temperature. An excellant combination of tensile strength and elongation of $98.3kgf/mm^2$ and 44.4% appears. This combination comes from TRIP phenomena of retained austenite during deformation. The stability of retained austenite Is very Important for the good ductility and it depends on diffusion of carbon and manganese during reverse transformation. The air cooling after holding at intercritical temperature retards the formation of pearlite and provides the carbon enrichment in retained austenite, resulting the increase of elongation in cold-roiled TRIP steel.

  • PDF