• Title/Summary/Keyword: Carbon Nanotube, CNT

Search Result 765, Processing Time 0.025 seconds

Supercapacitor performances of carbon nanotube composite carbon fibers from electrospinning

  • Yang, Kap-Seung;Kim, Chan;Lee, Wan-Jin
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.69-70
    • /
    • 2003
  • 10 wt.% of PAN was dissolved in N,N-dimethylformamide (DMF) and 1 wt. % of the multi wall carbon nanotubes (MWCNTs) was evenly dispersed in PAN solution by using ultrasonic miner. The 1 wt.% addition of MWCNT increased the specific capacitance by two times more from 82 to 160 F/g. The specific capacitance of carbon nanofiber(CNF)/carbon nanotube(CNT) composite capacitors was about 90 F/g at the current density of 500 mA/g. This value is even larger than the capacitance from the CNF electrode at the current density of 5 mA. The relatively high capacitance at the high current density is a practical importance for applications to supercapacitor in motor vehicle.

  • PDF

Carbon nanotubes-properties and applications: a review

  • Ibrahim, Khalid Saeed
    • Carbon letters
    • /
    • v.14 no.3
    • /
    • pp.131-144
    • /
    • 2013
  • The carbon nanotube (CNT) represents one of the most unique inventions in the field of nanotechnology. CNTs have been studied closely over the last two decades by many researchers around the world due to their great potential in different fields. CNTs are rolled graphene with $SP^2$ hybridization. The important aspects of CNTs are their light weight, small size with a high aspect ratio, good tensile strength, and good conducting characteristics, which make them useful as fillers in different materials such as polymers, metallic surfaces and ceramics. CNTs also have potential applications in the field of nanotechnology, nanomedicine, transistors, actuators, sensors, membranes, and capacitors. There are various techniques which can be used for the synthesis of CNTs. These include the arc-discharge method, chemical vaporize deposition (CVD), the laser ablation method, and the sol gel method. CNTs can be single-walled, double-walled and multi-walled. CNTs have unique mechanical, electrical and optical properties, all of which have been extensively studied. The present review is focused on the synthesis, functionalization, properties and applications of CNTs. The toxic effect of CNTs is also presented in a summarized form.

Capacitance and Output Current Control by CNT Concentration in the CNT/PVDF Composite Films for Electronic Devices (전자소자로의 응용을 위한 CNT/PVDF 복합막에서 CNT 조성에 의한 정전용량과 출력전류 제어)

  • Lee, Sunwoo;No, Im-Jun;Shin, Paik-Kyun;Kim, Yongjin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1115-1119
    • /
    • 2013
  • The carbon nanotube/poly-vinylidene fluoride (CNT/PVDF) composite films for the use of electronic devices were fabricated by spray coating method using the CNT/PVDF solution, which was prepared by adding PVDF pellets into the CNT dispersed N-Methyl-2-pyrroli-done (NMP) solution. The CNT/PVDF composite films were peeled off from the glass substrate and were investigated by the scanning electron microscopy, which revealed that the CNTs were uniformly dispersed in the PVDF films and thickness of the films were approximately $20{\mu}m$. The capacitance of the CNT/PVDF films increased dramatically by adding CNTs into the PVDF matrix, and finally saturated approximately 1880 pF. However, the I-V curves didn't show any saturation effect in the CNT concentration range of 0 ~ 0.04 wt%. Therefore we can control the performance of the devices from the CNT/PVDF composite film by adjusting the current level resulted from the CNT concentration with the uniform capacitance value.

Fabrication and characterization of a carbon nanotube-based point electron source

  • Choi, Ha-Kyu;Kim, G.Y.;Song, Y.I.;Jeong, H.J.;Lim, S.C.;Lee, Y.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1536-1537
    • /
    • 2005
  • We have made point electron sources using carbon nanotubes (CNTs). For the fabrication of point electron sources, CNTs were dispersed in a solution and attached on electrochemically etched W tips using electrophoresis. In our study, we have utilized various CNTs such as single-walled CNT (SWCNT), multiwalled CNT (MWCNT), and thin-MWCNT and threshold current, turn-on voltage, filed enhancement factor of each emitter have been studied upon a tube/bundle diameter and length. In addition, fieldemitted electron energy distribution of various CNT emitters is characterized.

  • PDF

Enhanced Electron Emission from Carbon Nanotube Paste after Firing

  • Kang, Sung-Kee;Choi, Jong-Hyung;Han, Jae-Hee;Yoo, Ji-Beom;Park, Chong-Yun;Nam, Joong-Woo;Jung, J.E.;Kim, J.M.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.849-851
    • /
    • 2003
  • After multi-walled carbon nanotubes (MWNT) powder was crushed with ball milling process, it was mixed with organic vehicles. And then CNT paste was printed on ITO coated glass substrate. The field emission characteristics of CNT pastes fired in air atmosphere was better than that of CNT paste fired in Ar ambient due to less organic residues after firing.

  • PDF

A study on the fabrication of lightweight composite materials for heat dissipation using CNT and Al powder with injection molding for vehicle (사출성형을 통한 CNT 및 Al Powder를 이용한 방열 및 차량용 경량 복합재료 제작 연구)

  • Leem, Byoung-Ill;Yun, Jae-Woong
    • Design & Manufacturing
    • /
    • v.13 no.3
    • /
    • pp.24-28
    • /
    • 2019
  • In this study, a study was carried out that could effectively produce a heat dissipation effect on plastic materials. Using carbon nanotube (CNT), aluminum powder and plastic, the material properties were tested in 2 cases of compounding ratio. The test sample mold was designed and constructed prior to the experiment. The experiments include tensile strength, elongation rate, flexural strength, flexural elasticity rate, eye-jaw impact strength, gravity and thermal conductivity. Results from 60% and 70% mixture of aluminium to plastic were tested, and a 10% less combined result was a relatively good property. For research purposes, the heat dissipation effect and light weighting obtained a good measure when the combined amount of Al was 60%.

A study on the fabrication of lightweight composite materials for heat dissipation using CNT and Al powder with injection molding for vehicle (사출성형을 통한 CNT 및 Al Powder를 이용한 방열 및 차량용 경량 복합재료 제작 연구)

  • Leem, Byoung-Ill;Yun, Jae-Woong
    • Design & Manufacturing
    • /
    • v.13 no.3
    • /
    • pp.6-10
    • /
    • 2019
  • In this study, a study was carried out that could effectively produce a heat dissipation effect on plastic materials. Using carbon nanotube (CNT), aluminum powder and plastic, the material properties were tested in 2 cases of compounding ratio. The test sample mold was designed and constructed prior to the experiment. The experiments include tensile strength, elongation rate, flexural strength, flexural elasticity rate, eye-jaw impact strength, gravity and thermal conductivity. Results from 60% and 70% mixture of aluminium to plastic were tested, and a 10% less combined result was a relatively good property. For research purposes, the heat dissipation effect and light weighting obtained a good measure when the combined amount of Al was 60%.

Application of Carbon Nanotube Powders to Energy Storage (탄소나노튜브 분말의 에너지저장 이용)

  • 안중호
    • Journal of Powder Materials
    • /
    • v.11 no.4
    • /
    • pp.279-287
    • /
    • 2004
  • 탄소재료는 결정구조에 따라 카본블랙(carbon black), 그라파이트(graphite), 탄소섬유(carbon fiber) 등 다양한 형태가 있으며 그 응용 또한 광범위하다. 이는 탄소재료가 화학적으로 매우 안정하고, 열 및 전기전도성이 우수하며, 기계적인 특성면에서도 고강도, 고탄성율을 가지고 있어서 구조적으로 안정하기 때문이다. 특히 $C_{60}$(fullerene)와 탄소나노튜브(carbon naotube : CNT)등 근래 새로이 발견된 탄소물질들$^{1.2)}$ 은 그 독특한 결정구조와 성질로 인해 다양한 분야의 응용이 예상된다.

Electrical Characteristics of Carbon Nanotubes by Plasma and Microwave Surface Treatments

  • Cho, Sang-Jin;Shrestha, Shankar Prasad;Lee, Soon-Bo;Boo, Jin-Hyo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.905-907
    • /
    • 2014
  • The plasma and microwave surface treatments of carbon nanotubes that loaded on plastic substrates were carried out with expecting a change of carbon nanotube dispersion by increasing treatment time. The microwave treatment process was undergone by commercial microwave oven (800 W). The electrical property was measured by hall measurement and resistance was increased by increasing $O_2$ flow rate of plasma, suggesting an improvement of carbon nanotube dispersion and a possibility of controlling the resistances of carbon nanotubes by plasma surface treatment. The resistance was increased in both polyethylene terephthalate and polyimide substrates by increasing $O_2$ flow rate. Resistance changes only slightly with different $O_2$ flow treatment in measure rho for all polyimide samples. Sheet resistance is lowest in polyimide substrate not due to high carbon nanotube loading but due to tendency to remain in elongated structure. $O_2$ or $N_2$ plasma treatments on both polyethylene terephthalate and polyimide substrates lead to increase in sheet resistance.