• Title/Summary/Keyword: Carbon Nanotube, CNT

Search Result 765, Processing Time 0.044 seconds

Effect of Photosensitive Carbon Nanotube Paste on Field Emission Properties (감광성 탄소나노튜브 페이스트의 조성과 열처리가 전계방출 특성에 미치는 영향)

  • Oh, Jeong-Seob;Kim, Dae-Jun;Jeong, Jin-Woo;Song, Yoon-Ho;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.550-556
    • /
    • 2006
  • Photosensitive carbon nanotube (CNT) pastes are explored to develop a CNT field emitter for field emission display (FED) application. We formulated a photosensitive paste including multi-walled CNTs (MWNTs) for screen printing. The photosensitive CNT paste was synthesized by mixing of MWNTs, inorganic fillers (nano metal), organic vehicle, monomers and photo initiator. The CNT paste films were patterned by using backside exposure technique. The CNTs were strongly fixed on a cathode by formation of carbon residue during firing process. For the CNT emitters, current-voltage(I-V) characteristics and images of field emission were evaluated. The emission properties of CNT emitters are dependent on the paste composition. A turn-on electric field for the CNT field emitters is measured to be 1 V/$\mu$m. Additionally, the effect of heat treatment parameter on field emission properties was discussed. The newly formulated photosensitive CNT paste can be potentially applicable to highly reliable CNT field emitters.

Improved Electrical Conductivity of a Carbon Nanotube Mat Composite Prepared by In-Situ Polymerization and Compression Molding with Compression Pressure

  • Noh, Ye Ji;Kim, Han Sang;Kim, Seong Yun
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.243-247
    • /
    • 2012
  • A fabrication method to improve the processability of thermoplastic carbon nanotube (CNT) mat composites was investigated by using in-situ polymerizable and low viscous cyclic butylene terephthalate oligomers. The electrical conductivity of the CNT mat composites strongly depended on the compression pressure, and the trend can be explained in terms of two cases, low and high compression pressure, respectively. High CNT mat content in the CNT mat composites and the surface of the CNT mat composites with fully contacted CNTs was achieved under high compression pressure, and direct contact between four probes and the surface of the CNT mat composites with fully contacted CNTs gave resistance of $2.1{\Omega}$. In this study the maximum electrical conductivity of the CNT mat composites, obtained under a maximum applied compression pressure of 27 MPa, was 11 904 S $m^{-1}$, where the weight fraction of the CNT mat was 36.5%.

Nonlinear Analysis of Electromechanical Behavior in Carbon Nanotube Devices (탄소나노튜브 디바이스의 전기역학적 비선형 거동 해석)

  • Kim, Il-Kwang;Lee, Soo-Il;Kang, Sang-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.467-471
    • /
    • 2009
  • In this study a cantilevered carbon nanotube(CNT) switch was investigated with the linear and the nonlinear structural models incorporating the electrostatic force and van der Waals interactions between the CNT and ground surface. Due to the applied voltage and van der Waals interactions the CNT deforms statically and dynamically and finally pull into the surface. When the nonlinear model is considered in case of the relatively large gap between the CNT and the surface, the static pull-in voltage was increased due to the nonlinear hardening effect. Also the dynamic response was investigated with the different external dc and ac voltages. The CNT shows various dynamic behaviors and instabilities including dynamic pull-in. Based on this study, further research on the dynamic and nonlinear stability of CNT nanodevices should be requested to develop the new type of nano switches or nano-memory.

  • PDF

A Study on the Carbon Nanotube Cartridges Using Electric Field (전기장을 이용한 탄소나노튜브 카트리지 연구)

  • Choi J.S.;Kwak Y.K.;Kim S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1164-1167
    • /
    • 2005
  • This paper is about the carbon nanotube(CNT) samples called as CNT cartridges. The CNT cartridges are useful to make it better to fabricate the nano-sized devices like nanoprobes and nanotweezers through physical attachment. To make these cartridges, we need to align CNTs and to purify them from raw material. There is a variety of methods to align 1-dimensional nanostructures like nanotubes and nanowires. In this review, we mainly focused on the methods using electric field. And we will introduce various researches in relation to the CNT cartridges and the fabrication methods using the CNT cartridges and nanomanipulation techniques.

  • PDF

Brush Painting법으로 제작된 플렉시블 유기태양전지용 투명 탄소나노튜브 전극의 특성 연구

  • Jo, Da-Yeong;Kim, Han-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.596-596
    • /
    • 2013
  • 본 연구에서는 Carbon nanotube 용액을 brush-painting 시스템을 이용하여 유연성 있는 PET 기판 위에 고품위의 플렉시블 투명전극을 제작하였다. CNT 박막의 두께에 따른 특성을 알아보기 위해 brushing 횟수를 증가시켜 UV/Vis Spectrometry, four-point probe 및 Hall measurement를 이용하여 전기적, 광학적특성을 알아보았다. 최적조건인 bilayer의 CNT 박막은 244 Ohm/sq.의 면 저항과 550 nm에서 68%의 투과도를 얻을 수 있었다. CNT 박막의 기계적 응력에 따른 전기적 안정성을 알아보기 위해 bending test를 진행하였다. 10,000번 구부려도 저항의 변화가 거의 없어 이 박막이 플렉시블한 소자에 적합하다는 것을 알았다. 유기태양전지의 적용 가능성을 알아보기 위해 CNT 박막을 유기태양전지의 anode 층으로 적용하여 1.6% (VOC: 0.566(V), $J_{SC}$: 7.118(mA/$cm^2$), Fill Factor: 40.49(%))의 효율을 얻어 유기태양전지 소자의 적용 가능성을 알았다. 최종적으로 실험에서 성막된 CNT 박막은 기존의 CVD공정과 같은 복잡한 공정 대신에 쉽고 간편하게 고품위의 flexible brush-painting Carbon nanotube (CNT) 투명전극을 제작 하여 플렉시블한 유기태양전지 소자의 가능성을 알아보았다.

  • PDF

Carbon nanotube transparent conductive film: current status and prospect

  • Han, Chang-Soo;Oh, Sang-Keun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.474-475
    • /
    • 2009
  • As a substitute of ITO material, carbon nanotube (CNT) is widely studied for transparent conductive film (TCF). Current sheet resistance of CNT-TCF is about 100 ${\Omega}$/sq at 80% transmittance. But CNT-TCF performance in manufacturable level is about 500 ${\Omega}$/sq at 83% based on the Topnanosys Co's result. Therefore, critical issue in CNT-TCF research is to reduce the sheet resistance with manufacturing reliability. In this report, recent developments using CNT-TCF are introduced. Touch panel, transparent LED signboard, transparent speaker and transparent heater are representative examples. Also I describe the future issues and prospect of CNT-TCF for the flexible display.

  • PDF

Deposition Behavior and Properties of Carbon Nanotube Aluminum Composite Coatings in Kinetic Spraying Process (탄소 나노튜브 알루미늄 복합재료 저온 분사 코팅의 적층 거동 및 특성)

  • Kang, Ki-Cheol;Xiong, Yuming;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.26 no.5
    • /
    • pp.36-42
    • /
    • 2008
  • Carbon nanotube (CNT) aluminum composite coatings were built up through kinetic spraying process. Deposition behavior of CNT aluminum composite on an aluminum 1050 alloy substrate was analyzed based on deposition mechanism of kinetic spraying. The microstructure of CNT aluminum composite coating were observed and analyzed. Also, the electrical resistivity, bond strength and micro-hardness of the CNT aluminum composite coatings were measured and compared to kinetic sprayed aluminum coatings. The CNT aluminum composite coatings have a dense structure with low porosity. Compared to kinetic sprayed aluminum coating, the CNT aluminum composite coatings present lower electrical resistivity and higher micro-hardness due to high electrical conductivity and dispersion hardening effects of CNTs.

Detection of Trace Copper Metal at Carbon Nanotube Based Electrodes Using Squarewave Anodic Stripping Voltammetry

  • Choi, Changkun;Jeong, Youngsam;Kwon, Yongchai
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.801-809
    • /
    • 2013
  • We investigate sensitivity and limit of detection (LOD) of trace copper (Cu) metal using pristine carbon nanotube (CNT) and acidified CNT (ACNT) electrodes. Squarewave based anodic stripping voltammetry (SWASV) is used to determine the stripped Cu concentration. Prior to performing the SWASV measurements, its optimal conditions are determined and with that, effects of potential scan rate and $Cu^{2+}$ concentration on stripping current are evaluated. The measurements indicate that (1) ACNT electrode shows better results than CNT electrode and (2) stripping is controlled by surface reaction. In the given $Cu^{2+}$ concentration range of 25-150 ppb, peak stripping current has linearity with $Cu^{2+}$ concentration. Quantitatively, sensitivity and LOD of Cu in ACNT electrode are 9.36 ${\mu}A\;{\mu}M^{-1}$ and 3 ppb, while their values are 3.99 ${\mu}A\;{\mu}M^{-1}$ and 3 ppb with CNT electrode. We evaluate the effect of three different water solutions (deionized water, tap water and river water) on stripping current and the confirm types of water don't affect the sensitivity of Cu. It turns out by optical inspection and cyclic voltammetry that superiority of ACNT electrode to CNT electrode is attributed to exfoliation of CNT bundles and improved interfacial adhesion occurring during oxidation of CNTs.

Field Emission Characteristics of Surface-treated CNT Emitter by Ar Ion Bombardment (아르곤 이온에 의해 표면처리된 CNT 에미터의 전계방출 특성)

  • Kwon, Sang-Jik
    • 전자공학회논문지 IE
    • /
    • v.44 no.2
    • /
    • pp.26-31
    • /
    • 2007
  • A surface treatment was performed after the screen printing of a carbon nanotube paste for obtaining the carbon nanotube field emission array(CNT FEA) on the soda-lime glass substrate. In this experiment, Ar ion bombardment was applied as an effective surface treatment method. After making a cathode electrode on the glass substrate, photo sensitive CNT paste was screen-printed, and then back-side was exposure by uv light. Then, the exposed CNT paste was selectively remained by development. After post-baking, the remained CNT paste was bombarded by accelerated Ar ions for removing some binders and exposing only CNTs. As results, the field emission characteristics were strongly depended on the accelerating energy. At 100 eV, the emission was highest and as the acceleration energy increases more then 100 eV, the emission decreased. This was due to the removal of CNT itself as well as binders.

Applicability Assessment of Carbon Nanotube to Slow Sand Filtration for Bacteria Removal (박테리아 제거를 위한 완속 모래여과에서 탄소나노튜브의 적용성 검토)

  • An, Hee-Kyung;Park, Seong-Jik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.12
    • /
    • pp.873-878
    • /
    • 2014
  • The applicability of carbon nanotube (CNT) to slow sand filtration for the removal of bacteria was studied using scanning electron microscope and column experiments. The morphology of CNT were investigated using scanning electron microscope and the CNT looked like a skein serving bacteria favorable site for adhesion. Column experiments were performed over a range of CNT filter depth, pH, and ionic strength. Bacteria removal efficiency was found to increase from 44.15% to 99.95% as the CNT filter depth increased from 1 cm to 5 cm, and 3 cm of CNT filter depth was required for significant removal of bacteria. pH increase from 5.5 to 8.5 decreased the bacteria removal efficiency, due to the electrostatic repulsion between bacteria and CNT at higher pH. Bacteria removal efficiency decreased from 97.25% to 70.90% as the ionic strength increased from 0 mM to 50 mM. This study demonstrated that the CNT can be applied to slow sand filtration for treating microbially contaminated water.