• Title/Summary/Keyword: Carbon Nanotube, CNT

Search Result 765, Processing Time 0.034 seconds

Evaluation on mechanical enhancement and fire resistance of carbon nanotube (CNT) reinforced concrete

  • Yu, Zechuan;Lau, Denvid
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.335-349
    • /
    • 2017
  • To cope with the demand on giant and durable buildings, reinforcement of concrete is a practical problem being extensively investigated in the civil engineering field. Among various reinforcing techniques, fiber-reinforced concrete (FRC) has been proven to be an effective approach. In practice, such fibers include steel fibers, polyvinyl alcohol (PVA) fibers, polyacrylonitrile (PAN) carbon fibers and asbestos fibers, with the length scale ranging from centimeters to micrometers. When advancing such technique down to the nanoscale, it is noticed that carbon nanotubes (CNTs) are stronger than other fibers and can provide a better reinforcement to concrete. In the last decade, CNT-reinforced concrete attracts a lot of attentions in research. Despite high cost of CNTs at present, the growing availability of carbon materials might push the usage of CNTs into practice in the near future, making the reinforcement technique of great potential. A review of existing research works may constitute a conclusive reference and facilitate further developments. In reference to the recent experimental works, this paper reports some key evaluations on CNT-reinforced cementitious materials, covering FRC mechanism, CNT dispersion, CNT-cement structures, mechanical properties and fire safety. Emphasis is placed on the interplay between CNTs and calcium silicate hydrate (C-S-H) at the nanoscale. The relationship between the CNTs-cement structures and the mechanical enhancement, especially at a high-temperature condition, is discussed based on molecular dynamics simulations. After concluding remarks, challenges to improve the CNTs reinforcement technique are proposed.

Electrical Properties of Plate Typed Shunt Resistors with Low TCR Property (낮은 TCR 특성을 가지는 플레이트 션트저항의 전기적 특성)

  • Lim, Youngtaek;Kim, Eun-Min;Lee, Sang-Won;Ahn, Jeong-Rae;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.219-222
    • /
    • 2019
  • In this study, we fabricated plate-type shunt resistors with thermal stability by parallelly connecting metal alloy plates with positive temperature coefficient of resistance (TCR) and carbon nanotube (CNT) plates with negative TCR. The metal alloy plates, which were prepared by alloying Cu and Mn with a composition of 91 wt% of Cu and 9 wt% of Mn, showed around $800ppm/^{\circ}C$ of TCR, and the CNT plates prepared from the CNT solution by using the vacuum filtration method showed around $-800ppm/^{\circ}C$ of TCR. The shunt resistor that was fabricated by stacking metal alloy plates and CNT plates in this work showed about $46.93ppm/^{\circ}C$ of TCR. Therefore, we conclude that a shunt resistor with low TCR can be realized by simply adjusting the TCR of the metal alloy only, because the TCR of the CNT plate has an identical value.

Electrochemical Determination of Dopamine Based on Carbon Nanotube-Sol-Gel Titania-Nafion Composite Film Modified Electrode

  • Park, Ji-Ae;Kim, Byung-Kun;Choi, Han-Nim;Lee, Won-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3123-3127
    • /
    • 2010
  • A highly sensitive electrochemical detection method for dopamine (DA) has been developed by relying on a multiwalled carbon nanotube (CNT)-sol-gel titania-Nafion composite film modified glassy carbon (GC) electrode. The CNT-titania-Nafion/GC electrode exhibited excellent electrocatalytic activity towards DA. Therefore, the CNT-titania-Nafion/GC electrode showed improved voltammetric and amperometric responses for DA compared to those obtained with both titania-Nafion/GC and Nafion/GC electrodes. The CNT-titania-Nafion/GC electrode gave a linear response ($R^2$ = 0.999) for DA from $0.5\;{\mu}M$ to 0.5 mM with a detection limit (S/N = 3) of $0.1\;{\mu}M$ and a good sensitivity of 150 mA/M while other electrodes such as CNT-Nafion/GC, titania-Nafion/GC, and a bare GC gave a sensitivity of 89, 39, and 36 mA/M, respectively. Besides, the CNT-titania-Nafion/GC electrode displayed very fast response time within 2 s. The modified electrode showed good selectivity against ascorbic acid. The modified electrode showed good stability and reproducibility. The CNT-titania-Nafion/GC electrode was applied to the determination of DA in urine and serum samples.

Experimental study of assembly of the carbon nanotube tip for SPM (SPM 용 카본 나노튜브 팁 조립의 실험적 연구)

  • Park J.K.;Kim J.E.;Han C.S.;Park Y.G.;Hwang K.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1228-1231
    • /
    • 2005
  • This paper reports about the development of scanning probe microscopy (SPM) tip with multi-walled carbon nanotube (MWNT). For making a carbon nanotube (CNT) modified tips, AC electric field which causes the dielectrophoresis was used for alignment and deposition of CNTs to the metal coated SPM tip. By dropping the MWNT solution and applying an electric field between an SPM tip and an electrode, MWNTs which were dispersed into a diluted solution were directly assembled onto the apex of the SPM tips due to the attraction by the dielectrophoretic force. In this paper, we investigate experimental conditions about the alignment of the CNT to tip axis according to the change of the angle between a tip and an electrode. Experimental results are presented, and then fabricated CNT tips are showed and measurement results for 15nm gold particles are compared with that of the conventional silicon tip.

  • PDF

Nano Communication Systems Using Carbon Nanotube (탄소나노튜브를 활용한 나노 통신 시스템 연구)

  • Kwon, Tae-Soo;Hwang, Gyung-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.9
    • /
    • pp.877-884
    • /
    • 2016
  • Nano communication system technologies are future core technologies that facilitate the implementation of tiny wireless communication systems with sizes in the range of hundreds of nanometers to tens of micrometers, which cannot be implemented by current wireless communication system technologies. In particular, novel nano communication system technology, which is based on electrical and mechanical resonance characteristics of carbon nanotube(: CNT), does not simply miniaturize system modules, but suggests a new approach that changes system architectures. Therefore, this paper surveys the state of the art on CNT-based nano communication technologies in aspects of system implementation, and proposes important research issues for convergence of nano and communication technologies.

Tribological Characteristics of Si-Diamond-Like Carbon Films in a Condition with Carbon Nanotube Ink Lubricant (Carbon Nanotube 잉크 환경에서의 Si-Diamond-Like Carbon 박막의 내마모 특성)

  • Jang, Kil-Chan;Kim, Tae-Gyu
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.149-155
    • /
    • 2011
  • We investigated tribological characteristics of diamond-like carbon (DLC) in a condition with carbon nanotube (CNT) content of 1wt% in aqueous solution. Si-DLC films were deposited by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) process on Al6061 aluminum alloy. In this study, the deposition of DLC films was carried out in vacuum with a chamber pressure of 10-5 to 10-3 Torr achieved by mechanical pump followed by turbo molecular pump. The surface adsorbed oxygen on the Aluminum substrates was removed by passing Ar gas for 10 minutes. The RF power was maintained at 500W throughout the experiment. A buffer layer of HMDSO was deposited on the substrate to improve the adhesion of DLC coating. At this point CH4 gas was introduced in the chamber using gas flow controller and DLC coating was deposited on the buffer layer along with HMDSO for 50 min. The thickness of 1 ${\mu}m$ was obtained for DLC films on aluminum substrates The tribological properties of as synthesized DLC films were analyzed by wear test in the presence of dry air, water and lubricant such as CNT ink.

Spray-coated Carbon Nanotube Counter Electrodes for Dye-sensitized Solar Cells

  • Lee, Won-Jae;Lee, Dong-Yun;Kim, In-Sung;Jeong, Soon-Jong;Song, Jae-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.4
    • /
    • pp.140-143
    • /
    • 2005
  • Carbon Nanotube(CNTs) counter electrode is a promising alternative to Platinum counter electrode for dye sensitized solar cells (DSSCs). In this study, CNT counter electrodes having different visible light transmittance were prepared on fluorine-doped tin oxide (FTO) glass surface by spray coating method. Microstructural images show that there are CNT-tangled region coated on FTO glass counter electrodes. Using such CNT counter electrodes and screen printed $TiO_2$ electrodes, DSSCs were assembled and its I-V characteristics have been studied and compared. Light energy conversion efficiency of DSSCs increased with decreasing in light transmittance of CNT counter electrode. Efficiency of DSSCs having CNT counter electrode is compatible to that of Pt counter electrode.

나노튜브를 이용한 AC구동 OLED

  • Jeon, So-Yeon;Yu, Se-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.532-532
    • /
    • 2012
  • 탄소 나노튜브(carbon nanotube, CNT)를 사용하여 AC 구동 방식의 organic light emitting devices (OLED)를 만들었다. 이 소자는 ITO가 코팅된 유리 위에 유전체 층, 유기 발광층 그리고 맨 위의 금속 전극 층으로 총 3개의 층으로 구성되어있다. 유전물질로써는 cyanoethyl pullulan (CRS)를 N,N dimethylformamide (DMF) 용매에 녹여 ITO층 위에 코팅하였고, 유기발광 물질로 poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV)를 chloroform (CF)에 녹여 유전체 층 위에 코팅하였다. CNT를 MEH-PPV와 섞어서 유기발광 혼합물을 만들고 난 후, 유전체층 위에 코팅하였다. 마지막으로 알류미늄 전극을 시료 위에 코팅하였다. 소자에서 사용한 MEH-PPV에 의해 나오는 붉은색 발광을 확인 한 결과, CNT를 사용한 OLED 소자가 CNT를 사용하지 않는 소자보다 brightness가 좋았고, 전류도 더 작게 흘렀다. CNT의 농도에 따라 brightness의 변화는 경향을 나타냈다. CNT에 의한 percolation 효과 때문에 이러한 OLED 시료의 성능 향상이 이루어졌음을 입증하는 실험결과를 발표에서 설명할 예정이다.

  • PDF

Fabrication and Field Emission Properties of Dot-patterned CNT Emitters using Mechanically Dispersed Photosensitive CNT paste (기계적 분산 처리한 CNT 페이스트의 제조와 Dot 패턴된 에미터의 전계방출 특성)

  • Lee, Han-Sung;Jeon, Ji-Hyeon;Kim, Jin-Hee;Goak, Jeung-Choon;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.450-451
    • /
    • 2007
  • Dot-patterned carbon nanotube (CNT) emitters with excellent field emission properties were fabricated using photosensitive CNT paste. We carried out a parametric study on the compositions and the fabrication processes of the paste, in particular, by ball milling CNTs, which were optimized in terms of dot shapes and their field emission characteristics. The ball milling process improved the field emission current of the dot-patterned CNT emitters several times higher than that of the non-milled paste.

  • PDF

Modification of ultrafiltration membranes with carbon nanotube buckypaper for fouling alleviation

  • Guo, Jin;Liu, Jian-Hong;Wang, Li-Ying;Liu, Hong
    • Membrane and Water Treatment
    • /
    • v.6 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • The modification of ultrafiltration membranes with carbon nanotube (CNT) buckypaper on fouling control was investigated. Two types of commercially available flat-sheet membranes were used: PS35 and PES900C/D (PES) (the PS35 membranes were hydrophilic with a molecular weight cutoff of 20 kDa, and the PES membranes were hydrophobic with a molecular weight cutoff of 20 kDa). The CNT buckypaper modified ultrafiltration membranes were prepared by filtering a CNT suspension through the flat-sheet membrane in a dead-end ultrafiltration unit. After modification, the pure water flux of PES was significantly increased, while the pure water flux of PS35 was decreased. The properties of the CNT modified membranes were also investigated. Considering the antifouling properties, pure water flux of the modified membrane, and the stability of CNT buckypaper layer on the membrane surface, ethanol solution with a concentration of 50 wt.%, multi-walled carbon nanotubes (MWCNTs) with a larger diameter (30-50 nm), and the CNT loading with $7.5g/m^2$ was selected. The CNT buckypaper on the surface of ultrafiltration membranes can trap the pollutants in sewage effluent and prevent them reaching the surface of virgin membranes. Water quality analysis showed that the effluent quality of the modified membrane was obviously improved. The removal efficiency of humic acid and protein-like matters by the modified membrane was significant. These results indicate the potential application of the CNT buckypaper layer modified membranes in the field of wastewater reclaim.