• Title/Summary/Keyword: Carbon Nano Material

Search Result 372, Processing Time 0.026 seconds

Characterization of nano-structure pyrolytic char for smart and sustainable nanomaterials

  • N. K. Karthikeyan;S. Elavenil
    • Advances in nano research
    • /
    • v.16 no.1
    • /
    • pp.53-69
    • /
    • 2024
  • Advancements in the technology of building materials has led to diverse applications of nanomaterials with the aim to monitor concrete structures. While there are myriad instances of the use of nanoparticles in building materials, the production of smart nano cement-composites is often expensive. Thereupon, this research aims to discover a sustainable nanomaterial from tyre waste using the pyrolysis process as part of the green manufacturing circle. Here, Nano Structure Tyre-Char (NSTC) is introduced as a zero-dimension carbon-based nanoparticle. The NSTC particles were characterized using various standard characterization techniques. Several salient results for the NSTC particles were obtained using microscopic and spectroscopic techniques. The size of the particles as well as that of the agglomerates were reduced significantly using the milling process and the results were validated through a scanning electron microscope. The crystallite size and crystallinity were found to be ~35nm and 10.42%, respectively. The direct bandgap value of 5.93eV and good optical conductivity at 786 nm were obtained from the ultra violet visible spectroscopy measurements. The thermal analysis reveals the presence of a substantial amount of carbon, the rate of maximum weight loss, and the two stages of phase transformation. The FT-Raman confirms the presence of carboxyl groups and a ID/IG ratio of 0.83. Water contact angle around 140° on the surface implies the highly hydrophobic nature of the material and its low surface energy. This characteristic process assists to obtain a sustainable nanomaterial from waste tyres, contributing to the development of a smart building material.

Fabrication of Nano Composites Using Hybrid Rapid Prototyping (하이브리드 쾌속 조형을 이용한 나노 복합재의 조형)

  • Chu W.S.;Kim S.G.;Ahn S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.757-760
    • /
    • 2005
  • The technology of rapid prototyping (RP) is used for design verification, function test and fabrication of prototype. The current issues in RP are improvement in accuracy and application of various materials. In this paper, a hybrid rapid prototyping system is introduced which can fabricate nano composites using various materials. This hybrid system adopts RP and machining process, so material deposition and removal is performed at the same time in a single station. As examples, micro gears and a composite scaffold were fabricated using photo cured polymer with nano powders such as carbon black and hydroxyapatite. From the micro gear samples the hybrid RP technology showed higher precision than those made by casting or deposition process.

  • PDF

Electrochemical Properties of Carbon Nano-tube as the Counter Electrode of Dye-sensitized solar cell (염료감응형 태양전지의 상대전극 재료로서 탄소나노튜브의 전기화학적 특성)

  • Kim, Hyun-Ju;Lee, Dong-Yun;Koo, Bo-Kun;Lee, Won-Jae;Song, Jae-Sung;Lee, Dae-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.10
    • /
    • pp.1090-1094
    • /
    • 2004
  • Studies on porous oxide electrode, dye and electrolyte for dye-sensitized solar cells have been intensively carried out until now. However, counter electrode have not been much studied so far. Accordingly, it is needed to investigate new counter electrode materials with superior catalyst property and to substitute for Pt electrode. In this case, carbon nano-tubes (CNTs) are one of alternatives for counter electrodes as following merits: low resistivity, excellent electron emission property, large surface area and low cost due to development of mass production technique. Such advantages gave us to select multiwalled CNTs (MWCNT) as counter electrode for dye-sensitized solar cell. Also, cyclic voltammetry and impedance spectroscopy were used to investigate electrochemical properties of both CNT electrode and Pt electrode. It was found that sheet resistance of CNT electrode was similar to that of Pt electrode, also, electrochemical properties of CNT electrode was superior to that of Pt electrode on the basis on the measurement of CV and impedance spectrum. It was found that CNT is likely to be a very promising electrode material for dye solar cells.

Development of Aluminum Matrix Composites Containing Nano-carbon Materials (나노탄소물질을 함유하는 알루미늄기지 복합소재 개발)

  • Kim, Jungjoon;Kim, Daeyoung;Choi, Hyunjoo
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.253-258
    • /
    • 2021
  • There is increasing demand for the development of a new material with high strength, high stiffness, and good electrical conductivity that can be used for high-voltage direct current cables. In this study, we develop aluminum-based composites containing C60 fullerenes, carbon nanotubes, or graphene using a powder metallurgical route and evaluate their strength, stiffness, coefficient of thermal expansion, and electrical conductivity. By optimizing the process conditions, a material with a tensile strength of 800 MPa, an elastic modulus of 90 GPa, and an electrical conductivity of 40% IACS is obtained, which may replace iron-core cables. Furthermore, by designing the type and volume fraction of the reinforcement, a material with a tensile strength of 380 MPa, elastic modulus of 80 GPa, and electrical conductivity of 54% IACS is obtained, which may compete with AA 6201 aluminum alloys for use in all-aluminum conductor cables.

Technical Status of Carbon Nanotubes Composites (탄소나노튜브 복합체의 기술동향)

  • Lee, Jong-Il;Jung, Hee-Tae
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.7-14
    • /
    • 2008
  • Carbon nanotubes are considered as the most ideal nano filler in the field of composites with their excellent electrical, mechanical, and thermal properties. Therefore carbon nanotubes composites are increasingly utilized in conductive materials, structural material with high strength and low weight and multifunctional material. This review article describes recent research trend of carbon nanotubes synthesis, modification, various properties of the carbon nanotubes composites and their application. Furthermore the future development direction for the commercialization of carbon nanotubes composites is proposed.

Ophthalmic Application of Hydrogel Polymer Containing Carbon Nanomaterials

  • Seok, Jae-Wuk;Geum, Yong-Pil;Shin, Dong-Seok;Sung, A-Young
    • Journal of Integrative Natural Science
    • /
    • v.12 no.4
    • /
    • pp.116-121
    • /
    • 2019
  • This experiment is to evaluate the physical properties of the hydrogel lens with the addition of carbon-based nanomaterials, Graphene oxide and Carbon nanotube, and to confirm the improvement of strength. Hyaluronic acid, a hydrophilic substance, was used as an additive by using HEMA (2-hydroxyethyl methacrylate) and ethylene glycol dimethacrylate (EGDMA) as a base monomers. Graphene oxide and two types of Carbon nanotubes(Amide functionalized and Carboxilic acid functionalized) were added 0.1%, 0.3%, 0.5%, respectively, and the physical properties were analyzed by measuring water content, refractive index, breaking strength and SEM image. In the case of the sample added with each carbon nano material, the water content tended to increase for all three materials. The breaking strength tended to increase in Graphene oxide and Carbon nanotube; Carboxilic acid functionalized, but in the case of Carbon nanotube; amide fuctionalized, the breaking strength tended to decrease. However, Carbon nanotube; amide fuctionalized had the highest breaking strength among the three nano materials. Thus, the addition of certain carbon nanomaterials seems to be appropriate for improving the strength of hydrogel lenses.

LiMnBO3/C: A Potential Cathode Material for Lithium Batteries

  • Aravindan, V.;Karthikeyan, K.;Amaresh, S.;Lee, Y.S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1506-1508
    • /
    • 2010
  • $LiMnBO_3$ was successfully synthesized by a solid-state reaction method both with and without a carbon coating. Adipic acid was used as source material for the carbon coating. $LiMnBO_3$ was composed of many small polycrystalline particles with a size of about 50 - 70 nm, which showed a very even particle morphology and highly ordered crystalline particulates. Whereas the carbon coated $LiMnBO_3$ was well covered by mat-like, fine material consisting of amorphous carbon derived from the carbonization of adipic acid during the synthetic process. Carbon coated cell exhibited improved and stable discharge capacity profile over the untreated. Two cells delivered an initial discharge capacity of 111 and 58 mAh/g for $LiMnBO_3$/C and $LiMnBO_3$, respectively. Carbon coating on the surface of the $LiMnBO_3$ drastically improved discharge capacity due to the improved electric conductivity in the $LiMnBO_3$ material.

The effect of target power density on physical and structural properties of amorphous carbon films prepared by CFUBM sputtering (비대칭 마그네트론 스퍼터링으로 합성된 비정질 탄소박막의 물리적, 구조적 특성에서 타겟 파워 밀도의 영향)

  • Lee, Jae-Hee;Park, Yong-Seob;Park, Jae-Wook;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.366-366
    • /
    • 2008
  • Amorphous carbon (a-C) is an interesting materials and its characteristics can be varied by tuning it $sp^3$ fractions. The $sp^3$ fraction in a-C films depends on the kinetic energy of the deposited carbon ions. In this work, a-C films was synthesized on Si(100) and glass substrates at room temperature by closed-field unbalanced magnetron (CFUBM) sputtering with the increase of graphite target power density. The structural and physical properties of films were investigated by using Raman spectroscopy, X-ray photoelectron spectrometer (XPS), nano- indentation, atomic force microscope (AFM) and contact-angle measurement. We obtained the good tribological properties, such as high hardness up to 26 GPa., friction coefficient lower than 0.1 and the smooth surface (rms roughness: 0.12 nm). The increase of the physical properties with the increase of target power density are related to the increase of nano-clusters in the carbon network. Also, these results might be due to the increase of the subplantation and resputtering by the increase of ions density in the plasma.

  • PDF

Electrochemical Characteristics of DAAQ/CNFs electrode for Supercapacitor (슈퍼커패시터용 DAAQ/CNFs 전극의 전기화학적 특성)

  • Kim, Hong-Il;Choi, Weon-Kyung;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1184-1187
    • /
    • 2003
  • Electrochemical capacitors are becoming attractive energy storage systems particularly for applications involving high power requirements such as hybrid systems consisting of batteries and electrochemical capacitors for electric vehicle propulsion. A new type electric double layer capacitor (EDLC) was constructed by using carbon nanofibers (CNFs) and DAAQ(1,5-diaminoanthraquinone) electrode. Carbonaceous materials are found in variety forms such as graphite, diamond, carbon fibers etc. While all the carbon nanofibers include impurities such as amorphous carbon, nanoparticles, catalytic metals and incompletely grown carbons. We have eliminated of Ni particles and some carbonaceous particles in nitric acid. Nitric acid treated CNFs could be covered with very thin DAAQ oligomer from the results of CV and TG analyses and SEM images. DAAQ oligomer film exhibited a specific capacity as 45-50 Ah/kg in 4M $H_2SO_4$. We established Process Parameters of the technique for the formation of nano-structured materials. Furthermore, improved the capacitive properties of the nano structured CNFs electrodes using controlled solution chemistry. As a result, CNFs coated by DAAQ composite electrode showed relatively good electrochemical behaviors in acidic electrolyte system with respect to specific capacity and scan rate dependency.

  • PDF

Wave propagation of FG-CNTRC plates in thermal environment using the high-order shear deformation plate theory

  • Hao-Xuan Ding;Hai-Bo Liu;Gui-Lin She;Fei Wu
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.207-215
    • /
    • 2023
  • This paper investigates wave propagation in functionally graded carbon nano-reinforced composite (FG-CNTRC) plates under the influence of temperature based on Reddy' plate model. The material properties of Carbon Nanotubes (CNTs) are size-dependent, and the volume fraction of CNTs varies only along the thickness direction of the plate for different CNTs reinforcement modes. In addition, the material properties of CNTs can vary for different temperature parameters. By solving the eigenvalue problem, analytical dispersion relations can be derived for CNTRC plates. The partial differential equations for the system are derived from Lagrange's principle and higher order shear deformation theory is used to obtain the wave equations for the CNTRC plate. Numerical analyses show that the wave propagation properties in the CNTRC plate are related to the volume fraction parameters of the CNTRC plate and the distribution pattern of the CNTs in the polymer matrix. The effects of different volume fractions of CNTs and the distribution pattern of carbon nanotubes along the cross section (UD-O-X plate) are discussed in detail.