• 제목/요약/키워드: Carbon Nano Fiber

검색결과 128건 처리시간 0.029초

분산 방법에 따른 카본 나노 섬유/에폭시 복합재료의 유전율 (Permittivities of the Carbon Nano Fiber/Epoxy Composite According to the Dispersion Methods)

  • 김태욱;김진봉;공진우;정재한;김준현
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.55-58
    • /
    • 2003
  • This paper presents a study on the permittivities of the carbon nano fiber/epoxy composite at microwave frequency. The permittivities of composite materials depend on the concentrations and the dispersion methods of the carbon nano fibers. The experimental values of complex permittivities were obtained for the specimen made by dispersion method using ethyl alcohol as dispersion media and compared with the results by simple mechanical mixing method.

  • PDF

나노섬유 분산과 섬유 배향성에 따른 탄소섬유 나노 복합재료의 기계적 특성 (Mechanical Properties of Carbon Fiber Nano Composites for Nano-fiber Additives and Fabric Orientation)

  • 송준희;최준용;김연직
    • 대한금속재료학회지
    • /
    • 제50권2호
    • /
    • pp.93-99
    • /
    • 2012
  • The mechanical properties of nano composites were evaluated for structural performance in order to enhance their applicability to the car and machine industrial fields. Carbon fiber reinforced plastics (CFRP) and GFRP were manufactured by vacuum-assisted resin transfer molding (VARTM) process with good mechanical properties. Tensile test was conducted to obtain the process factor of each composite. Also, carbon nano fiber (CNF) was dispersed in the composites and the relationship between the mechanical property and the CNF fraction was compared. The tensile strength and stiffness of 0/90 laminated CFRP were the best. CFRP/CNF (0.5 wt.%) was confirmed to be an excellent material for its elasticity and tensile strength.

알루미늄 필름, 전도성 직조섬유/나노 카본블랙 탄소섬유복합재료의 전자파 차폐효과에 관한 연구 (A Study on Electromagnetic Interference Shielding Effectiveness of the Aluminum film, Conductive Fabric and Nano Carbon black/Carbon Fiber Reinforced Composites)

  • 한길영;송동한;배지수;안동규
    • 한국기계가공학회지
    • /
    • 제7권4호
    • /
    • pp.10-16
    • /
    • 2008
  • This study investigated electromagnetic interference(EMI) shielding effectiveness(SE) of the aluminum film, conductive fabric and nano carbon black carbon fiber reinforced composites. We fabricated carbon fiber reinforced composites filled with nano carbon black where they bonded aluminum film and conductive fabric. The measurements of SE were carried out frequency range from 300MHz to 1.5GHz. It is observed that the SE of the bonded aluminum film and conductive fabric composites is the frequency dependent, increase with the increase in filler nano carbon black content. The aluminum film bonded composites showed higher SE compared to that of carbon black and conductive fabric. The aluminum film bonded epoxy composite was shown to exhibit up to 80dB of SE. The result that aluminum film bonded composite can be used for the purpose of EMI shielding as well as for some microwave applications.

  • PDF

Advances in liquid crystalline nano-carbon materials: preparation of nano-carbon based lyotropic liquid crystal and their fabrication of nano-carbon fibers with liquid crystalline spinning

  • Choi, Yong-Mun;Jung, Jin;Hwang, Jun Yeon;Kim, Seung Min;Jeong, Hyeonsu;Ku, Bon-Cheol;Goh, Munju
    • Carbon letters
    • /
    • 제16권4호
    • /
    • pp.223-232
    • /
    • 2015
  • This review presents current progress in the preparation methods of liquid crystalline nano-carbon materials and the liquid crystalline spinning method for producing nano-carbon fibers. In particular, we focus on the fabrication of liquid crystalline carbon nanotubes by spinning from superacids, and the continuous production of macroscopic fiber from liquid crystalline graphene oxide.

Electromagnetic interference shielding characteristics for orientation angle and number of plies of carbon fiber reinforced plastic

  • Kim, Hong Gun;Shin, Hee Jae;Kim, Gwang-Cheol;Park, Hyung Joon;Moon, Ho Joon;Kwac, Lee Ku
    • Carbon letters
    • /
    • 제15권4호
    • /
    • pp.268-276
    • /
    • 2014
  • Recently, methods that usea carbon-based filler, a conductive nanomaterial, have been investigated to develop composite fillers containing dielectric materials. In this study, we added geometric changes to a carbon fiber, a typical carbon-based filler material, by differentiating the orientation angle and the number of plies of the fiber. We also studied the electrical and electromagnetic shield characteristics. Based on the orientation angle of $0^{\circ}$, the orientation angle of the carbon fiber was changed between 0, 15, 30, 45, and $90^{\circ}$, and 2, 4, and 6 plies were stacked for each orientation angle. The maximum effect was found when the orientation angle was $90^{\circ}$, which was perpendicular to the electromagnetic wave flow, as compared to $0^{\circ}$, in which case the electrical resistance was small. Therefore, it is verified that the orientation angle has more of an effect on the electromagnetic interference shield performance than the number of plies.

탄소나노히팅파이프를 이용한 온실 난방에너지 절감효과 (Energy Saving Effects of Carbon Nano Heating Pipe for Heating of Greenhouse)

  • 백이;전종길;윤남규
    • 한국기계기술학회지
    • /
    • 제13권3호
    • /
    • pp.107-111
    • /
    • 2011
  • This carbon nano heating system was consisted of power supply equipment, a carbon fiber and a stainless flexible hose. carbon nano heating system was manufactured by carbon fiber of a power capacity 30kw/h and light-oil hot air heater in control plot was the heating capacity 30,000kcal/h, As the result, Temperature difference due to carbon nano heating system and hot air heater in greenhouse showed that air temperature at experimental greenhouse, comparison greenhouse were $14.8^{\circ}C$, $13.4^{\circ}C$ respectively. It was found that carbon nano heating system and light-oil hot air heater heating cost were 1,095,740won, 2,683,628won. therefore as heating cost saving 60%. Yield of tomatoes cultured in greenhouse using carbon nano heating pipe was 4% inclease. Economic analysis comparison between the carbon nano heating pipe and the hot air heater in greenhouse were 41% respectively.

카본나노튜브를 이용한 고성능 나노복합재료의 개발 동향 (The Development of High Performance Nano-composites with Carbon Nanotube)

  • 이민경;배수빈;박종규;이승걸
    • 한국염색가공학회지
    • /
    • 제26권2호
    • /
    • pp.71-78
    • /
    • 2014
  • This review paper is a state of the art report of the development of high performance nano-composites with carbon nanotube. We investigate the research and development (R&D) trends of high performance nano-composites with carbon nanotube by analyzing technical trends in research institutes and industry. We report the R&D and technology trends for the properties and applications of fabrication of hybrid composites with aligned carbon nanotubes, multifunctional fiber/carbon nanotube composites. We discuss the specific topics including unidirectional carbon nanotube, carbon nanotube forests, transfer-printing carbon nanotube technology, deposition of carbon nanotube by electrophoresis, vapor grown carbon fiber (VGCF), cup-stacked carbon nanotube, bucky paper and carbon nanotube yarns in this review paper.

나노입자 첨가를 통한 우레탄수지의 캐비테이션 저항 향상 (Addition of nano particle to increase the cavitation resistance of urethane)

  • 이익수;김낙주;박대원
    • 한국응용과학기술학회지
    • /
    • 제31권4호
    • /
    • pp.679-687
    • /
    • 2014
  • 본 연구에서는 캐비테이션에 의한 부식에 강한 도료를 개발하기 위하여 고탄성의 우레탄 수지에 내마모 성능을 향상시키기 위한 첨가제로서 Multi wall과 Single wall type의 Carbon nano tube(CNT)와 Spherical과 Fiber type의 Graphite 나노 입자를 첨가하여 물성과 캐비테이션에 대한 저항성, 작업성 등을 비교 평가하였다. 나노 입자로서 Graphite에서는 캐비테이션 저항성($t_{50}$)이 Spherical type($t_{50}$ 182min)보다는 Fiber type($t_{50}$ 292min)이 높은 캐비테이션 저항성을 갖는 것으로 관찰되었다. 또한 CNT에서는 Single wall type의 캐비테이션 저항성($t_{50}$ 286min)이 Multi wall보다는 더 높은 것으로 관찰되었다. 나노 입자중에서 가격 및 캐비테이션 저항성을 감안하면 가장 최적의 나노 입자는 Fiber type의 Graphite로 관찰되었다. 도료의 작업성 평가에서 수동 작업에 의해 제작된 표면은 매끈한 표면을 가지고 있으나 Spray 작업에 의해 제작된 표면은 표면이 균일하지 않으며 Spray시 발생된 Dust가 표면에 고착된 형태로 관찰되었다.

나노입자 코팅 탄소섬유 강화 복합재료의 전기전도도 향상 (Improvement of Electrical Conductivity of Carbon-Fiber Reinforced Plastics by Nano-particles Coating)

  • 서성욱;하만석;권오양;최흥섭
    • Composites Research
    • /
    • 제23권6호
    • /
    • pp.1-6
    • /
    • 2010
  • 복합재 항공기 동체의 낙뢰손상방지를 목적으로 탄소섬듐-주석 산화물(ITO) 나노입자를 코팅함으로써 탄소섬유강화플라스틱(CFRP) 복합재료의 전기전도도를 향상하였다. 탄소섬유에 코팅된 ITO 나노입자는 10~40%의 농도로 콜로이드 상태에서 분사되었다. CFRP의 전기전도도는 코팅 후 3배 이상 증가하였으며 현재 B-787 복합재 항공기 동체에 사용 중인 기술인 금속메쉬를 CFRP 외층에 매몰한 경우보다도 높은 전기전도도를 얻을 수 있었으며, 나노입자 코팅으로 섬유-기지 계면에 미지는 악영향은 발견되지 않았다. 모의 낙뢰에 의한 손상영역은 각각 다른 처리를 한 재료와 조건에 따라 초음파 C-scan 이미지로 확인하였다. ITO 40% 코팅 시편의 경우 전기전도도는 B-787 샘플의 경우보다 높았지만 낙뢰에 의한 손상영역의 크기는 거의 비슷한 수준이었다.

나노입자 첨가 유리섬유강화 복합재료의 전자기파 차폐특성 (Electromagnetic-wave Shielding by Nano Particles-contained Glass Fiber Reinforced Composite Materials)

  • 정우균;안성훈;원명식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1331-1334
    • /
    • 2004
  • The research on electromagnetic shielding has been advanced for military applications as well as for commercial products. Utilizing the reflective properties and absorptive properties of shielding material, the replied signal measured at the rear surface or at the signal source can be minimized. The shielding effect was obtained from materials having special absorptive properties or from structural characteristics such as stacking sequence. Recently researchers studied the electromagnetic properties of nano size particles. In this research {glass fiber}/{epoxy}/{nano particle} composites(GFR-Nano composites), was fabricated using various nano particles, and their properties in electromagnetic shielding were compared. For the visual observation of the nano composite materials, SEM(Scanning Electron Microscope) and TEM(Transmission Electron Microscope) were used. For the measurement of electromagnetic shielding, HP8719ES S-parameter Vector Network Analyser System was used on the frequency range of 8 GHz~12GHz. Among the nano particles, carbon black and Multi-Walled Carbon Nano-Tube (MWCNT) revealed outstanding electromagnetic shielding. Although silver nano particles (flake and powder) were expected to have effective electromagnetic shielding due to their excellent electric conductivities, test showed little shielding effect.

  • PDF