• Title/Summary/Keyword: Carbon Mineralization

Search Result 115, Processing Time 0.023 seconds

Growth and Soil Chemical Property of Small Apple Trees as Affected by Organic Fertilizers and Mulch Sources (비료원과 멀칭재료에 따른 사과 유묘의 생장 및 토양이화학성 변화)

  • Choi, Hyun-Sug;Rom, Curt;Lee, Youn;Cho, Jung-Lai;Jung, Seok-Kyu;Jee, Hyeong-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • BACKGROUND: This study was conducted to evaluate the effects of the fertilizer sources and ground cover mulches on nutrient release, growth, and photosynthesis in small one-year-old apple (Malus ${\times}$ domestica Borkh.) trees in controlled conditions. METHODS AND RESULTS: Treatments included no fertilizer (NF), commercial organic fertilizer (CF), and poultry litter (PL) for fertilizer treatments, and wood chips (WC), shredded paper (SP), green compost (GC), and grass clippings (GR) for cover mulch treatments. All treatments were applied proportionally based on the volume ratio equivalent to the soil. CF, PL, and GR treatments that had optimum carbon (C) and nitrogen (N) ratios (less than 30:1) for N mineralization through the microbes released the greatest $NH_4^+$ concentrations in the pot media at 90 days after the treatments, but GC mulch with the optimum C:N ratio did not. CF-, PL- and GR-treated plants had the largest leaf area, thickest stem diameter, longest shoot extension, and greater dry matter production. CONCLUSION(s): CF and PL showed an suitable organic nutrient source for improving plant growth in an orchard. Interestingly, GR also could be a nutrient source for tree growth, if vegetation competition is controlled by maintaining vegetation height and recycling enough grass clippings to the soil in an orchard.

Genesis of Iron Ore Deposits in the south-eastern Part of Gyeongnam Porvince, Korea (경남(慶南) 동남부지역(東南部地域) 철광상(鐵鑛床)의 성인(成因)에 관(關)한 연구(硏究))

  • Woo, Young-Kyun
    • Economic and Environmental Geology
    • /
    • v.21 no.1
    • /
    • pp.45-56
    • /
    • 1988
  • Many hydrothermal skarn-type iron ore deposits inchiding Mulgeum, Yangseong, Maeri and Kimhae mines are distributed in the south-eastern Gyeongnam Province, Korea. The deposits are magnetite veins which occurred in propylitized andesitic rock near the contact with late Cretaceous Masanite. Symmetrical zoned skarns are commonly developed around the magnetite veins. The order of the skarn zones from the vein is garnet-quartz skarn, epidote skarn, and epidote-orthoclase skarn. The garnets include isotropic or anisotropic andradite($Ad_{100{\sim}70}$), and the epidotes are composed of pistacite($Ps_{21-31}$). Fe contents of the epidotes generally increase toward the magnetite veins. Epidotes and garnets often show compositional variations from grain to grain, that is, their Fe and Al contents vary inversely. This suggests that the variations depend mainly upon $fo_2$ during the skarnization. Oxygen and carbon isotope analyses of minerals from andesitic rock, micrographic granite, major skarn zones and post-mineralization zones were conducted to provide the information on the formation temperature, the origin and the evolution of the hydrothermal solution forming the iron ore deposits. Becoming more distant from the ore vein, temperatures of skarn zones represent the decreasing tendency, but most ${\delta}O^{18}$ and ${\delta}O^{18}_{H_2O}$ values of skarn minerals represent no variation trend, and also the values are relatively low. Judging from all the isotopic data from the ore deposits, the major source of hydrothemal solution altering the skarn zones and precipitating the ore bodies was magmatic water derived from the more deeply seated micrographic granite. This high temperature hydrothermal solution rising through the fissures of propylitized andesitic rock was mixed with some meteoric water, and the extensive isotopic exchange occurred with the propylitized andesitic rock. During this process, the temperature and ${\delta}O^{18}_{H_2O}$ value of hydrothermal solution were lowered gradually. At the stage of iron ore precipitation, because after all the alteration was already finished, the oxygen isotopic exchange with the wall rock was nearly not taken. The relatively high ${\delta}O^{18}$ and ${\delta}O^{18}_{H_2O}$, and relatively low ${\delta}C^{13}$ values of calcites of post mineralization stage, are the results of leaching of the high ${\delta}O^{18}$ chert xenolith in the andesitic rock and low ${\delta}C^{13}$ andesitic rock.

  • PDF

Mineralization of Nitrogen in Soils under Paddy-Upland Switching Cultivation Systems (답전윤환토양(沓田輪換土壤)에서 질소무기화(窒素無機化)의 특성(特性)에 관(關)한 연구)

  • Ahn, Sang-Bae;Motomatsu, T.;Yeon, Beong-Yeal;Yuk, Chang-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.2
    • /
    • pp.133-137
    • /
    • 1992
  • The rate and pattern of soil nitrogen mineralization were investigated under conditions of a paddy-upland switching cultivation system. Experimental results obtained are as follows 1. Amounts of soil nitrogen mineralized were different in the order of potato-cabbage>soybean>continuous paddy plot for the first year, but potato-cabbage>continuous paddy>soybean plot for the second year, respectively. 2. In the third year cropping under upland condition a higher amount of soil nitrogen was found mineralized at the plot of continuous upland cultivation than at the alternate paddy-upland switching plot in the case of potato-cabbage, on the contrary, however, the higher amount was found at the alternate paddy-upland switching plot in the case of soybean cultivation. 3. The amounts of total soil nitrogen and carbon were lower in paddy-upland switching plots than in continuous paddy plots. This trend is significant in soybean plots. 4. A positive correlationship was found between phosphate buffer solution method for available nitrogen and submerged soil method for $NH_4-N$, both being utilized for the estimation of soil fertility.

  • PDF

Comparisons of Decomposition Rates, Carbon and Nitrogen Dynamics of Branches in Pinus densiflora and Quercus variabilis Stands (소나무와 굴참나무 임분의 가지 분해율과 탄소 및 질소 동태 비교)

  • Choi, Byeonggil;Baek, Gyeongwon;Kim, Hyungsub;Son, Yowhan;Kim, Choonsig
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.2
    • /
    • pp.89-99
    • /
    • 2021
  • This study was carried out to understand how factors of decomposition such as quality of the substrate (tree species), forest types, and soil·meteorological conditions affect decomposition rates and dynamics of carbon (C) and nitrogen (N) of branches in adjacent Pinus densiflora and Quercus variabilis stands in Sancheong and J inju in Southern Korea. The branch bags (30 cm × 30 cm) with branch samples (a diameter of 2.0 - 4.0 cm and length of 10 cm) were placed on the forest floor at each stand in May 2018. The branch bags were collected in August and November 2018, February and May 2019, respectively. The decomposition rates of branches in P. densiflora stands were 4.49 % for Sancheong, and 5.75 % for Jinju. Whereas, the decomposition rates in Q. variabilis were 20.01 % for Sancheong, and 24.68 % for Jinju, respectively. The decomposition of branches was more rapid in Q. variabilis compared with P. densiflora in both regions. C and N in decomposed branches were more mineralized in Q. variabilis, whereas C and N were more accumulated in P. densiflora. These results indicated that the decomposition rates, C and N of decomposed branches may be affected by differences in substrate quality such as initial N concentration and C/N ratio rather than differences between both regions including different environmental factors.

Characterization of Controlled Low-Strength Materials Utilizing CO2-Solidified CFBC Coal Ash (CO2 고정화된 CFBC 석탄재를 활용한 저강도 고유동 채움재의 특성평가)

  • Cho, Yong-Kwang;Nam, Seong-Young;Lee, Yong-Mu;Kim, Chun-Sik;Seo, Shin-Seok;Jo, Sung-Hyun;Lee, Hyoung-Woo;Ahn, Ji-Whan
    • Journal of Environmental Science International
    • /
    • v.26 no.11
    • /
    • pp.1267-1274
    • /
    • 2017
  • A Controlled Low-Strength Materials (CLSM) is suitable for mine backfilling because it does not require compaction owing to it high fluidity and can be installed quickly. Therefore, a CLSM utilizing $CO_2$-solidified Circulating Fluidzed Bed Combustion (CFBC) coal ash was developed and it's properties were investigated, since. $CO_2$-solidification of CFBC coal ash can inhibit exudation of heavy metals. The chemical composition and specific surface area of Pulverized coal Combustion fly ash and CFBC fly ash were analyzed. The water ratio, compressive strength and length change ratio of CLSM were confirmed. The water ratios differed with the specific surface area of the CLSM. It was confirmed that the porosity of CLSM affected its compressive strength and length change ratio.

Advanced Treatment of Wastewater Using Symbiotic Co-culture of Microalgae and Bacteria (미세조류와 박테리아의 공생 배양을 이용한 하폐수 고도처리)

  • Mujtaba, Ghulam;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • The co-culture system of microalgae and bacteria enables simultaneous removal of BOD and nutrients in a single reactor if the pair of microorganisms is symbiotic. In this case, nutrients are converted to biomass constituents of microalgae. This review highlights the importance and recent researches using symbiotic co-culture system of microalgae and bacteria in wastewater treatment, focusing on the removal of nitrogen and phosphorus. During wastewater treatment, the microalgae produces molecular oxygen through photosynthesis, which can be used as an electron acceptor by aerobic bacteria to degrade organic pollutants. The released $CO_2$ during the bacterial mineralization can then be consumed by microalgae as a carbon source in photosynthesis. Microalgae and bacteria in the co-culture system could cooperate or compete each other for resources. In the context of wastewater treatment, positive relationships are prerequisite to accomplish the sustainable removal of nutrients. Therefore, the selection of compatible species is very important if the co-culture has to be utilized in wastewater treatment.

Degradation of Aromatic Pollutants by UV Irradiation (UV조사에 의한 방향족오염물의 분해)

  • Min, Byoung-Chul;Kim, Jong-Hyang;Kim, Byung-Kwan
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.502-509
    • /
    • 1997
  • Aromatic pollutants(benzene, toluene, ethylbenzene and xylenes) were photodegraded by using a UV oxidation and the rates of degradation were investigated under various reaction conditions. Each of the solution containing 50 ppm benzene, 150 ppm ethylbenzene and 250 ppm xylenes was found UV-photodegraded over 90% in 1 hour of reaction time, wheras the only was 43 % degradation was obtained with 350 ppm toluene solution. A single component solution was more degradable than a mixed component solution and benzene was almost photodegraded at a pH 4.0, 6.4 and 10.0 after reaction time is 1 hr, ehtylbenzene was photodegraded about 92%(pH 4.0), 90%(pH 6.4) and 91%(pH 10.0), xylenes was photodegraded about 95%(pH 4.0), 90%(pH 6.4) and 92%(pH 10.0), but toluene was photodegraded about 80%(pH 4.0), 43%(pH 6.4) and 70%(pH 10.0), respectively. Kinetics studies show that the rate of decay in TOC(total organic carbon) were pseudo first-order rate except ethylbenzene, and then we could evaluate mineralization rate constants(k) of aromatics.

  • PDF

Desulfurization Efficiency of Lime Absorbent in In-Furnace Desulfurization as Fly Ash Binder in Power Plant (발전소 비산재를 결합재로 활용한 로내탈황용 석회 흡수제의 탈황효율)

  • Seo, Jun-Hyung;Baek, Chul-Seoung;Cho, Jin-Sang;Ahn, Ji-Whan;Yoon, Do-Young;Cho, Kye-Hong
    • Resources Recycling
    • /
    • v.27 no.3
    • /
    • pp.58-65
    • /
    • 2018
  • For the recycling of coal ash from the domestic circulating fluidized bed boilers, a lime-based sorbent with 0.2~0.4 mm size was prepared by using limestone powder and CFBC fly ash. Mixing a small amount of slaked lime in the lime-based absorbent lead the formation of calcium silicate on the surface of the particle and the strength of absorbent particle was improved. As a result of comparing the desulfurization characteristics, it was found that the conversion rate was about 10% higher than that of commercially available limestone desulfurization used in the furnace, which is confirmed that it can be used as a desulfurization absorbent.

Molecular Characteristics of Pseudomonas rhodesiae Strain KK1 in Response to Phenanthrene

  • Kahng, Hyung-Yeel;Nam, Kyoung-Phile
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.729-734
    • /
    • 2002
  • Radiorespirometric analysis revealed that Pseudomonas sp. strain KKI isolated from a soil contaminated with petroleum hydrocarbons was able to catabolize polycyclic aromatic hydrocarbons such as phenanthrene and naphthalene. The rate and extent of phenanthrene mineralization was markedly enhanced when the cells were pregrown on either naphthalene or phenanthrene, compared to the cells grown on universal carbon sources (i.e., TSA medium). Deduced amino acid sequence of the Rieske-type iron-sulfur center of a putative phenanthrene dioxygenase (PhnAl) obtained from the strain KKI shared significant homology with DxnAl (dioxin dioxygenase) from Spingomonas sp. RW1, BphA1b (biphenyl dioxygenase) from Spingomonas aromaticivorans F199, and PhnAc (phenanthrene diokygenase) from Burkholderia sp. RP007 or Alcaligenes faecalis AFK2. Northern hybridization using the dioxygenase gene fragment cloned from KKI showed that the expression of the putative phn dioxygenase gene reached the highest level in cells grown in the minimal medium containing phenanthrene and $KNO_3$, and the expression of the phn gene was repressed in cells grown with glucose. In addition to the metabolic change, phospholipid ester-linked fatty acids (PLFA) analysis revealed that the total cellular fatty acid composition of KKI was significantly changed in response to phenanthrene. Fatty acids such as 14:0, 16:0 3OH, 17:0 cyclo, 18:1$\omega$7c, 19:0 cyclo increased in phenanthrene-exposed cells, while fatty acids such as 10:0 3OH, 12:0, 12:0 2OH, 12:0 3OH, 16:1$\omega$7c, 15:0 iso 2OH, 16:0, 18:1$\omega$6c, 18:0 decreased.

Polychlorobiphenyl (PCB) 토양오염복원: PCB 제거 토양미생물들의 군집과 기능을 효과적으로 분석하는 신 genomics 방법개발에 관한 연구

  • Park Jun-Hong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.28-30
    • /
    • 2005
  • Because of high population diversity in soil microbial communities, it is difficult to accurately assess the capability of biodegradation of toxicant by microbes in soil and sediment. Identifying biodegradative microorganisms is an important step in designing and analyzing soil bioremediation. To remove non-important noise information, it is necessary to selectively enrich genomes of biodegradative microorganisms fromnon-biodegradative populations. For this purpose, a stable isotope probing (SIP) technique was applied in selectively harvesting the genomes of biphenyl-utilizing bacteria from soil microbial communities. Since many biphenyl-using microorganisms are responsible for aerobic PCB degradation In soil and sediments, biphenyl-utilizing bacteria were chosen as the target organisms. In soil microcosms, 13C-biphenyl was added as a selective carbon source for biphenyl users, According to $13C-CO_2$ analysis by GC-MS, 13C-biphenyl mineralization was detected after a 7-day of incubation. The heavy portion of DNA(13C-DNA) was separated from the light portion of DNA (12C-DNA) using equilibrium density gradient ultracentrifuge. Bacterial community structure in the 13C-DNAsample was analyzed by t-RFLP (terminal restriction fragment length polymorphism) method. The t-RFLP result demonstates that the use of SIP efficiently and selectively enriched the genomes of biphenyl degrading bacteria from non-degradative microbes. Furthermore, the bacterial diversity of biphenyl degrading populations was small enough for environmental genomes tools (metagenomics and DNA microarrays) to be used to detect functional (biphenyl degradation) genes from soil microbial communities, which may provide a significant progress in assessing microbial capability of PCB bioremediation in soil and groundwater.

  • PDF