• Title/Summary/Keyword: Carbon Lock-in

Search Result 17, Processing Time 0.024 seconds

Defect detection of wall thinning defect in pipes using Lock-in photo-infrared thermography technique (위상잠금 광-적외선 열화상 기술을 이용한 감육결함이 있는 직관시험편의 결함 검출)

  • Kim, Kyoung-Suk;Jang, Su-Ok;Park, Jong-Hyun;Choi, Tae-Ho;Song, Jae-Geun;Jung, Hyun-Chul
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.317-321
    • /
    • 2008
  • Piping in the Nuclear Power plants (NPP) are mostly consisted of carbon steel pipe. The wall thinning defect is mainly occurred by the affect of the flow accelerated corrosion (FAC) of fluid which flows in carbon steel pipes. This type of defect becomes the cause of damage or destruction of piping. Therefore, it is very important to measure defect which is existed not only on the welding partbut also on the whole field of pipe. Over the years, Infrared thermography (IRT) has been used as a non destructive testing methods of the various kinds of materials. This technique has many merits and applied to the industrial field but has limitation to the materials. Therefore, this method was combined with lock-in technique. So IRT detection resolution has been progressively improved using lock-in technique. In this paper, the quantitative analysis results of the location and the size of wall thinning defect that is artificially processed inside the carbon steel pipe by using IRT are obtained.

  • PDF

An historical analysis on the carbon lock-in of Korean electricity industry (한국 전력산업의 탄소고착에 대한 역사적 분석)

  • Chae, Yeoungjin;Roh, Keonki;Park, Jung-Gu
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.125-148
    • /
    • 2014
  • This paper performs a historical analysis on the various factors contributing to the current carbon lock-in of Korean electricity industry by using techo-institutional complex. The possibilities of the industry's carbon lock-out toward more sustainable development are also investigated. It turns out that market, firm, consumer, and government factors are all responsible for the development of the carbon lock-in of Korean power industry; the Korean government consistently favoring large power plants based on the economy of scale; below-cost electricity tariff; inflation policy to suppress increases in power price; rapid demand growth in summer and winter seasons; rigidities of electricity tariff; and expansion of gas-fired and imported coal-fired large power plants. On the other hand, except for nuclear power generation and smart grid, environment laws and new and renewable energy laws are the other remaining factors contributing to the carbon lock-out. Considering three key points that Korea is an export-oriented economy, the generation mix is the most critical factor to decide the amounts of carbon emission in the power industry, and the share of industry and commercial power consumption is over 85%, it is unlikely that Korea will achieve the carbon lock-out of power industry in the near future. Therefore, there are needs for more integrated approaches from market, firm, consumer, and government all together in order to achieve the carbon lock-out in the electricity industry. Firstly, from the market perspective, it is necessary to persue more active new and renewable energy penetration and to guarantee consumer choices by mitigating the incumbent's monopoly power as in the OECD countries. Secondly, from the firm perspective, the promotion of distributed energy system is urgent, which includes new and renewable resources and demand resources. Thirdly, from the consumer perspective, more green choices in the power tariff and customer awareness on the carbon lock-out are needed. Lastly, the government shall urgently improve power planning frameworks to include the various externalities that were not properly reflected in the past such as environmental and social conflict costs.

Bias Extension and Biaxial Tests for Carbon Dry Fabrics (탄소섬유 건직물의 일방향 편향 인장실험과 이축 인장실험)

  • 장승환;전성식
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.99-102
    • /
    • 2003
  • This paper aims to observe the micro-mechanical behaviour of tow geometry during deformation of dry woven carbon-fiber fabric. With the increment of shear angle fabric experiences 'lock-up'phenomenon. In this paper, deformation of micro-mechanical parameters such as tow interval, change in tow amplitude and wavelength are investigated. To observe the micro-deformation of the fabric structure, appropriate specimens from bias extension and biaxial tests are sectioned and observed under the microscope. It was found that different loading conditions cause geometric deferences in the tow architecture.

  • PDF

Progressive Process planning and die design to improve the formability in fine blanking of the lock plate in car seatbelt (자동차 좌석벨트의 록 플레이트의 정밀타발 시 성형성 향상을 위한 프로그레시브 공정 및 금형 설계)

  • Lee, Sang-Pill;Min, Byung-Hyun;Lee, Kwan-Young;Ko, Young-Jun;Kim, Chul;Kim, Chang-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.84-92
    • /
    • 2013
  • This study improves the formability in fine-blanking the lock plate of car seat belts using a low carbon steel(SM35C) plate. The optimal die design for the forming process is proposed using rules for process planning based on theories and field experiences. The optimal design is analyzed using commercial finite element software in order to solve the fracture problems in the extrusion process. Through the improved layout based on the FEM results, the fracture of the extruded part and the roll over problem are solved. Furthermore, it is demonstrated through the shown from experiments that the extruded part does not break in the modified die.

Detection and Quantification of Defects in Composite Material by Using Thermal Wave Method

  • Ranjit, Shrestha;Kim, Wontae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.6
    • /
    • pp.398-406
    • /
    • 2015
  • This paper explored the results of experimental investigation on carbon fiber reinforced polymer (CFRP) composite sample with thermal wave technique. The thermal wave technique combines the advantages of both conventional thermal wave measurement and thermography using a commercial Infrared camera. The sample comprises the artificial inclusions of foreign material to simulate defects of different shape and size at different depths. Lock-in thermography is employed for the detection of defects. The temperature field of the front surface of sample was observed and analysed at several excitation frequencies ranging from 0.562 Hz down to 0.032 Hz. Four-point methodology was applied to extract the amplitude and phase of thermal wave's harmonic component. The phase images are analyzed to find qualitative and quantitative information about the defects.

MICROSCOPIC OBSERVATION OF DRAPED COMPOSITE MATERIALS : Bias Extension and Biaxial Tests (직물 복합재료의 드레이핑 미소 거동 관찰 : 일방향 편향 인장실험과 이축 인장실험)

  • 장승환
    • Composites Research
    • /
    • v.17 no.1
    • /
    • pp.38-46
    • /
    • 2004
  • This paper aims to correlate the micro-mechanical behaviour of tow geometry with applied in-plane forces during deformation of dry woven carbon-fibre fabric. These in-plane forces lead to differences in tow reorganisation during deformation and so changes in the way in which 'lock-up' occurs. In this paper, deformation of micro-mechanical parameters such as tow interval, crimp angle, change in tow amplitude and wavelength are investigated. To observe the micro-deformation of the fabric structure, appropriate specimens from bias extension and biaxial tests are sectioned and observed under the microscope. It was found that different loading conditions cause geometric deferences in the tow architecture. The variation in deformed tow geometry with shear angle is fitted using a simple parametric model.

An Analysis of The Photoacoustic Signal in Metals (금속에서의 광음향 신호 분석)

  • Yi, Chong-Ho;Jun, Kye-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.24-30
    • /
    • 1994
  • In this paper, the system for detection of photoacoustic signal has been constructed by using CW $CO_{2}$ laser for an analysis of the photoacoustic signal In metals and aluminum carbon steel, brass have been used as sample. The photoacoustic signals of several nano amperes have been detected in each sample with varying modulation frequency of laser, time constant of lock-in amplifier, thickness of sample. The characteristics of photoacoustic signal has been analysed in term of phase angle by using signal processing technique. Results indicate that the photoacoustic signal can be stabilized by adjustment of time constant of lock-in amplifier, that the signal amplitude is proportional to the ratio of thermal expansion coefficient to thermal capacity of metal, and that the signal amplitude decreases exponentially with sample thickness as well as with modulation frequency.

  • PDF

Study on the Defects Detection in Composites by Using Optical Position and Infrared Thermography

  • Kwon, Koo-Ahn;Park, Hee-Sang;Choi, Man-Yong;Park, Jeong-Hak;Choi, Won Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.2
    • /
    • pp.130-137
    • /
    • 2016
  • Non-destructive testing methods for composite materials (e.g., carbon fiber-reinforced and glass fiber-reinforced plastic) have been widely used to detect damage in the overall industry. This study detects defects using optical infrared thermography. The transient heat transport in a solid body is characterized by two dynamic quantities, namely, thermal diffusivity and thermal effusivity. The first quantity describes the speed with thermal energy diffuses through a material, whereas the second one represents a type of thermal inertia. The defect detection rate is increased by utilizing a lock-in method and performing a comparison of the defect detection rates. The comparison is conducted by dividing the irradiation method into reflection and transmission methods and the irradiation time into 50 mHz and 100 mHz. The experimental results show that detecting defects at 50 mHz is easy using the transmission method. This result implies that low-frequency thermal waves penetrate a material deeper than the high-frequency waves.

Analysis of the Carburizing Heat Treatment Process for SNCM Alloy Steel Using the Finite Element Method (유한요소법을 이용한 SNCM 합금강의 침탄열처리 공정 해석)

  • Choi S.C.;Lee D.J.;Kim H.Y.;Kim H.J.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1284-1292
    • /
    • 2006
  • Heat treatment is a controlled heating and cooling process to improve the physical and/or mechanical properties of metal products without changing their shapes. Today finite element method is widely used to simulate lots of manufacturing processes including heat treatment and surface hardening processes, which aims to reduce the number of time- and cost-consuming experimental tryouts. In this study we tried, using this method, to simulate the full carburizing process that consists of carburizing, diffusing and quenching, and to predict the distribution of carbon contents, phase fraction and hardness, thermal deformation and other mechanical characteristics as the results. In the finite element analysis deformation, heat transfer, phase transformation and diffusion effects are taken into consideration. The carburizing process of a lock gear, a part of the car seat recliner, that is manufactured by the fine blanking process is adopted as the analysis model. The numerical results are discussed and partly compared with experimental data. And a combination of process parameters that is expected to give the highest surface hardness is proposed on the basis of this discussion.

Electrochemical Properties of Carbon Nano-Tube Electrode (탄소나노튜브 전극의 전기화학적 특성)

  • Lee Dong-Yoon;Koo Bo-Kun;Lee Won-Jae;Song Jae-Sung;Kim Hyun-Ju
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.4
    • /
    • pp.139-143
    • /
    • 2005
  • For application of carbon nano-tube (CNT) as a counter electrode materials of dye-sensitized solar cell (DSSC), the electrochemical behavior of CNT electrode was studied, employing cyclic-voltammetry (C-V) and impedance spectroscopy. Fabrication of CNT-paste and formation of CNT-counter electrode for characteristic measurement have been carried out using ball-milling and doctor blade process, respectively. Unit cell for measurements was assembled using Pt electrode, CNT electrode, and iodine-embedded electrolyte. Field emission-scanning electron microscopy (FE-SEM) was used for structural investigation of CNT powder and electrode. Sheet resistance of electrode was measured with 4-point probe method. Electrochemical properties of electrode, C-V and impedance spectrum, were studied, employing potentiogalvanostat (EG&G 273A) and lock in amplifier (EG&G 5210). As a results, the sheet resistance of CNT electrode is almost similar to that of F-doped SnO2 (FTO) coated glass substrate as approximately 10 ohm/sq. From C-V and impedance spectroscopy measurements, it was found that CNT electrode has high reaction rate and low interface reaction resistance between CNT surface and electrolyte. These results provides that CNT electrode were superior to that of conventional Pt electrode. Particularly, the reaction rate in the CNT electrode is about thrice high than Pt electrode. Therefore. CNT electrode is to be good candidate material for counter electrode in DSSC.