• Title/Summary/Keyword: Carbon Heating Element

Search Result 46, Processing Time 0.026 seconds

Electrical and Resistance Heating Properties of Carbon Fiber Heating Element for Car Seat (자동차 시트용 탄소섬유 발열체의 전기적 및 저항 발열 특성)

  • Choi, Kyeong-Eun;Park, Chan-Hee;Seo, Min-Kang
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.210-216
    • /
    • 2016
  • In this paper, the electrical and resistance heating properties of carbon fiber heating elements with different electroless Ni-P plating times for car seat were studied. The specific resistance and specific heat of the carbon fibers were determined using 4-point probe method and differential scanning calorimetry (DSC), respectively. The surface morphology and temperature of carbon fibers were measured by scanning electron microscope (SEM) and thermo-graphic camera, respectively. From experimental results, the nickel layer thickness and surface temperature of carbon fibers increased with increasing the plating time. However, the specific heat and specific resistance decreased with respect to the increased plating time. In conclusion, the electroless Ni-P plating could improve the resistance heating and electrical properties of carbon fiber heating elements for car seat.

Anti-icing Method of Heated Walkway in Ice Class Ships: Efficiency Verification of CNT-based Surface Heating Element Method Through Numerical Analysis

  • Woo-Jin Park;Dong-Su Park;Mun-Beom Shin;Young-Kyo Seo
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.215-224
    • /
    • 2023
  • While melting glaciers due to global warming have facilitated the development of polar routes, Arctic vessels require reliable anti-icing methods to prevent hull icing. Currently, the existing anti-icing method, i.e., the heating coil method, has disadvantages, such as disconnection and power inefficiency. Therefore, a carbon nanotube-based surface heating element method was developed to address these limitations. In this study, the numerical analysis of the surface heating element method was performed using ANSYS. The numerical analysis included conjugate heat transfer and computational fluid dynamics to consider the conduction solids and the effects of wind speed and temperature in cold environments. The numerical analysis method of the surface heating element method was validated by comparing the experimental results of the heating coil method with the numerical analysis results (under the -30 ℃ conditions). The surface heating element method demonstrated significantly higher efficiency, ranging from 56.65-80.17%, depending on the conditions compared to the heating coil method. Moreover, even under extreme environmental conditions (-45 ℃), the surface heating element method satisfied anti-icing requirements. The surface heating element method is more efficient and economical than the heating coil method. However, proper heat flux calculation for environmental conditions is required to prevent excessive design.

The Method of Thermograph using Thermoelectric Sensor Device in the Carbon fiber Thick Films (Carbon fiber 후막형 열전센서 소자를 이용한 적외선 체열진단)

  • Song, Min-Jong;Dong, Kyung-Rae;Kim, Chang-Bok;Choi, Seong-Kwan;Park, Yong-Soon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.2
    • /
    • pp.145-150
    • /
    • 2010
  • Thick films of carbon fiber were prepared by a heating element of plan shape made in Darin co., We have investigated surface morphology of the specimen depending on heat-treatment temperatures. Scanning electron microscope(SEM) image of carbon fiber thick films of the specimen heat treated shows a grain growth at $1200^{\circ}C$ and becomes a poly-crystallization at $1350^{\circ}C$. The variation of resistivity at the thermally annealed specimen above $600^{\circ}C$ depends on type of the substrates. It may be due to a variation of film thickness and a difference of interfacial phenomena. A heating element of features was affected significantly by skin blood and quantity of heat of the body physiological function. After radiation of farinfrared for plate heating element, the function of biometric physiological is considered of skin blood flow and calorie which greatly affects on individuals. Electromagnetic wave was not influence on the body.

  • PDF

Preparation and Characterization of Carbon Nanofiber Composite Coated Fabric-Heating Elements (탄소나노섬유복합체를 이용한 의류용 직물발열체의 제조 및 특성)

  • Kang, Hyunsuk;Lee, Sunhee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.39 no.2
    • /
    • pp.247-256
    • /
    • 2015
  • This study prepared fabric-heating elements of carbon nanofiber composite to characterize morphologies and electrical properties. Carbon nanofiber composite was prepared with 15wt% PVDF-HFP/acetone solution, and 0, 1, 2, 4, 8, and 16wt% carbon nanofiber. Dispersion of solution was conducted with stirring for a week, sonification for 24 hours, and storage for a month, until coating. Carbon nanofiber composite coated fabrics were prepared by knife-edge coating on nylon fabrics with a thickness of 0.1mm. The morphologies of carbon nanofiber composite coated fabrics were measured by FE-SEM. Surface resistance was determined by KS K0555 and worksurface tester. A heating-pad clamping device connected to a variable AC/DC power supply was used for the electric heating characteristics of the samples and multi-layer fabrics. An infrared camera applied voltages to samples while maintaining a certain distance from fabric surfaces. The results of morphologies indicated that the CNF content increased specifically to the visibility and presence of carbon nanofiber. The surface resistance test results revealed that an increased CNF content improved the performance of coated fabrics. The results of electric heating properties, surface temperatures and current of 16wt% carbon nanofiber composite coated fabrics were $80^{\circ}C$ and 0.35A in the application of a 20V current. Carbon nanofiber composite coated fabrics have excellent electrical characteristics as fabric-heating elements.

Effect of Microwave and High-temperature Heating Methods on Contaminates Removal from Oil-contaminated Soil by Heat Treatment (유류오염토양의 열처리에서 micro파와 고온발열체 방법이 오염제거에 미치는 영향)

  • Ha, Sang-An;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.23 no.2
    • /
    • pp.46-52
    • /
    • 2014
  • This study was conducted to observe the removal efficiency of oil-contaminated soil by various tests using microwaves and high-temperature heating elements. The water content was measured with the treatment amount, which was lowered to 300g in a relatively short amount of time. The treatment rate of TPH(Total Petroleum Hydrocarbons) showed the highest value with 70.1% when the SiC-activated carbon heating element was at 4 kW/kg, compared to the SiC heating element used alone. In particular, the higher electric power became, the higher treatment rate became, except at 3 kW. In the case of the heating element made by the fusion of SiC and activated carbon, the internal temperature exceeded $300^{\circ}C$ and again fell when it was treated at 4 kW for about 2 minutes. Then, after about 8 minutes, it rose again. On the basis of such results, the energy content necessary for the sample was calculated according to the electric power of microwaves, and tthe constant of TPH treatment was measured by tests on the treatment characteristics of oil-contaminated soil.

Fabrication and resistance heating properties of flexible SiC fiber rope as heating elements (유연한 탄화규소 섬유 로프 발열체의 제조와 저항 발열 특성)

  • Joo, Young Jun;Cho, Kwang Youn
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.6
    • /
    • pp.258-263
    • /
    • 2020
  • Silicon carbide (SiC) fibers mainly fabricated from polycarbosilane, a ceramic precursor, are applied as reinforcing materials for ceramic matrix composites (CMCs) because of their high temperature oxidation resistance, tensile strength, and light weight. In this study, continuous SiC fibers used to fabricate rope-type flexible heating elements capable of generating high-temperature heat (> 650℃). For high-efficiency heating elements, the resistance of SiC fiber rope was measured by 2-point probe method according to the cross-sectional area and length. In addition, the fabrication conditions of rope-type SiC fiber heating elements were optimized by controlling the oxygen impurities and the size of crystal grains present in the amorphous SiC fiber. As a result, the SiC fiber heating element having a resistance range of about 100~200 Ω exhibited an excellent power consumption efficiency of 1.5 times compared to that of the carbon fiber heating element.

Evaluation of the Influence of Pyrolysis Temperature on the Electrical Heating Properties of Si-O-C Fiber

  • Sanghun Kim;Seong-Gun Bae;Bum-Mo Koo;Dong-Geun Shin;Yeong-Geun Jeong
    • Composites Research
    • /
    • v.37 no.4
    • /
    • pp.330-336
    • /
    • 2024
  • Silicon carbide (SiC) fibers exhibit excellent heat and chemical resistance at high temperatures. In this study, polycarbosilane melt spinning, oxidation curing, and pyrolysis were performed to fabricate amorphous SiC fibers, and their resistance heating characteristics were evaluated. A stick-type amorphous silicon carbide fiber heating element was manufactured, and the resistance was measured using the two-point probe method. The structural, electrical, and heating characteristics were evaluated at different pyrolysis temperatures. The fiber produced at 1300℃ displayed the highest conductivity and the maximum heating compared to the fibers produced at 1200℃ and 1400℃. This may be attributed to difference in the structures of the fibers, particularly the SiC and graphitic carbon structures.

Remediation of Bunker Fuel Oil C Contaminated Soil with Microwave Radiation and Heating Elements (마이크로파 조사와 발열체를 이용한 벙커C유 오염토양의 복원)

  • Oh, Da-kyung;Lee, Tae-jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.8
    • /
    • pp.458-464
    • /
    • 2015
  • Total petroleum hydrocarbon (TPH) removal and temperature variations in bunker fuel oil C contaminated soil were investigated by using microwave radiation in the presence of triiron oxide or activated carbon as a heating element. Temperature increments of $1.4{\sim}1.6^{\circ}C/Watt$ were observed, when 100~500 watt of microwave radiation was applied for the contaminated soil in the presence of triiron oxide or activated carbon. Temperature variation of the soil was more rapid in the presence of triiron oxide than activated carbon. 10% or 25% of heating element content was required to reach the temperature of thermal desorption for triiron oxide and activated carbon respectively. After radiation, 44.1% and 89.4% of initial TPH in soil was removed in the presence of triiron oxide and activated carbon respectively. It was observed that activated carbon was more reactive than triiron oxide for the removal of high molecular carbon of bunker fuel oil C.

Experimental and Numerical Study of Heating Characteristics of Discontinuous Carbon Fiber-Epoxy Composites (불연속 탄소섬유-에폭시 복합재의 발열성능 평가)

  • Kim, Myungsoo;Kong, Kyungil;Kim, Nari;Park, Hyung Wook;Park, Ounyoung;Park, Young-Bin;Jung, Mooyoung;Lee, Sang Hwan;Kim, Su Gi
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.72-78
    • /
    • 2013
  • This study explores the resistive heating characteristics of discontinuous carbon fiber (CF)-epoxy composites. Test samples including 1, 3, and 5 wt.% CF were fabricated using sonication and cast molding processes. For heating performance characterization, DC currents were applied to the composite samples, and surface temperatures were evaluated visually and quantitatively using an infrared camera. To estimate the thermal performance of composites and verify the experimental results, finite element analyses were performed. The resistive heating mechanism was investigated in connection with CF loading and applied voltages. Resistive heating efficiency increased proportionately with CF concentration and applied voltage. To obtain homogeneous temperature distribution of the samples, high degree of CF dispersion is required.

A Study on Heating Element Properties of Carbon Nanotube/Silicon Carbonitride Composite Sheet using Branched Structured Polysilazane as Precursor (가지 달린 구조의 폴리실라잔을 전구체로 이용해 제조한 카본 나노튜브/실리콘 카보나이트라이드 복합체 시트의 발열특성에 관한 연구)

  • Huh, Tae-Hwan;Song, Hyeon Jun;Jeong, Yeong Jin;Kwark, Young-Je
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.395-400
    • /
    • 2020
  • In this paper, we manufactured silsesquiaznae (SSQZ)-coated carbon nanotube (CNT) surface heating elements, which allowed stable heating at high temperatures. The prepared composite sheet was confirmed by FE-SEM that the SSQZ fully coated the surface of CNT sheet. Furthermore, it was also confirmed that the silicon carbonitride (SiCN) ceramic formed by heat treatment of 800℃ have no defects found and maintain intact structure. The CNT/SiCN composite sheet was able to achieve higher thermal stability than raw CNT sheets in both nitrogen and air atmosphere. Finally, the CNT/SiCN composite sheet was possible to heat up at a temperature of over 700℃ in the atmosphere, and the re-heating was successfully operated after cooling.