• Title/Summary/Keyword: Carbon Fiber Reinforced Plastics (CFRP)

Search Result 160, Processing Time 0.024 seconds

A STUDY ON IMPACT CHARACTERISTICS OF THE STACKING SEQUENCES IN CFRP COMPOSITES SUBJECTED TO FALLING-WEIGHT IMPACT LOADING

  • Im, K.H.;Park, N.S.;Kim, Y.N.;Yang, I.Y.
    • International Journal of Automotive Technology
    • /
    • v.4 no.4
    • /
    • pp.203-211
    • /
    • 2003
  • This paper describes a method for a falling weight impact test to estimate the impact energy absorbing characteristics and impact strength of CFRP (Carbon-fiber reinforced plastics) laminate plates based on considerations of stress wave propagation theory, which were converted to measurements of load and displacement verses time. The delamination area of impacted specimens for the different ply orientations was measured with an ultrasonic C-scanner to determine the correlation between impact energy and delamination area. The energy absorbed by a quasi-isotropic specimen having four interfaces was higher than that of orthotropic laminates with two interfaces. The more interfaces, the greater the energy absorbed. The absorbed energy of a hybrid specimen embedding GFRP (Glass-fiber reinforced plastics) layer was higher than that of normal specimens. Also, a falling weight impact tester was built to evaluate the characteristics and impact strength of CFRPs.

A Study on the Impact and Vibration acting on the Laminated Composite Honeycomb Core Type Sandwich Plate Structure (복합적층 하니콤 코어형 샌드위치 판구조물에 미치는 충격과 진동에 관한 연구)

  • Hong, Do-Kwan;Seo, Jin;Ahn, Chan-Woo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.616-622
    • /
    • 2001
  • In this paper, we analyzed the laminated composite sandwich plate structure of honeycomb core with changing values of the designing parameters. As a result, in designing parameters of that, the more height and thickness of the laminated composite plate's core, the more increase of natural frequency. The laminated angle has the maximum value when the plate of honeycomb core is join to opposite direction. This paper shows that the natural frequency of CFRP is higher than that of GFRP, and also impact strength marks maximum value in case of antisymmetry than symmetry of core. Also it shows that the mode shapes are various along with the angle-ply of laminated composite plate.

  • PDF

Optimum Design of the Laminated Composite Sandwich Plate Structure of Truss Core considering Vibration Characteristics (복합적층 트러스 코어형 샌드위치 판구조물의 진동특성을 고려한 최적설계)

  • Jung, Suok-Mo;Hong, Do-Kwan;Ahn, Chan-Woo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.703-709
    • /
    • 2001
  • In this paper, we analyzed the laminated composite sandwich plate structure of truss core with changing values of the designing parameters. As a result, in designing parameters of that, the more height and thickness of the laminated composite plate's core, the more increase of natural frequency. In this type of structure, in the case of applying core of the laminated composite plate and antisymmetric stacking, natural frequency has high value and we calculated the optimum angle-ply making natural frequency maximum. Natural frequency of CFRP is higher than that of GFRP. Both are materials of the laminated composite plate. The mode shapes are various along with the angle-ply of the laminated composite plate.

  • PDF

Characterization of Water Absorption by CFRP Using Air-Coupled Ultrasonic Testing (공기결합 초음파탐상에 의한 CFRP 복합재의 흡습 특성 평가)

  • Lee, Joo-Min;Lee, Joo-Sung;Kim, Yong-Kwon;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.155-164
    • /
    • 2014
  • Carbon-fiber-reinforced plastic (CFRP) composites are increasingly being used in a variety of industry applications, such as aircraft, automobiles, and ships because of their high specific stiffness and high specific strength. Aircraft are exposed to high temperatures and high humidity for a long duration during flights. CFRP materials of the aircraft can absorb water, which could decrease the adhesion strength of these materials and cause their volumes to change with variation in internal stress. Therefore, it is necessary to estimate the characteristics of CFRP composites under actual conditions from the viewpoint of aircraft safety. In this study air-coupled ultrasonic testing (ACUT) was applied to the evaluation of water absorption properties of CFRP composites. CFRP specimens were fabricated and immersed in distilled water at $75^{\circ}C$ for 30, 60, and 120 days, after which their ultrasonic images were obtained by ACUT. The water absorption properties were determined by quantitatively analyzing the changes in ultrasonic signals. Further, shear strength was applied to the specimens to verify the changes in their mechanical properties for water absorption.

A Study on the Impact-Induced Damage in CFRP Angle-ply Laminates (CFRP 사교적층판의 충격손상에 관한 연구)

  • 배태성;입야영;양동률
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.237-247
    • /
    • 1993
  • Carbon fiber reinforced plastics(CFRP) have gained increased application in aerospace structures because of their specific strength and stiffness, but are sensitive to impact-induced damage. An experimental investigation was carried out to evaluate the impact resistance of CFRP according to the ply angle. The specimens of angle ply laminate composites were employed with [0.deg. $_{6}$/ .deg.$_{10}$/0.deg.$_{6}$], in which 6 kinds of ply angle such as .deg.=15.deg., 30.deg., 45.deg., 60.deg., 75.deg. and 90.deg. were selected. The impact tests were conducted using the air gun type impact testing machine by steel balls of diameter of 5 mm and 10 mm, and impact-induced damages were evaluated under same impact speed of V=60m/s. The impact damaged zones were observed through a scanning acoustic microscope (SAM). The obtained results were summarized as follows: (1) Delaminations on the interfacial boundaries showed th directional characteristics to the fiber directions. The delamination area on the impact side (interface A) was considerably smaller compared to that of the opposite side (interface B). (2) Cracks corresponding to other delaminations than those mentioned in SAM photographs were also seen on the impact damaged zone. (3) The delamination patterns were affected by the ply-angle, the dimensions of the specimen, and the boundary conditions. (4) The impact damaged zone showed zone showed the delamination on the interfacial boundaries, transverse shear cracks of the surface layer, and bending cracks of the bottom layer.r.r.r.

Comparison between Wire Rope and CFRP UD on Bending Analysis (엘리베이터용 와이어로프와 CFRP UD의 벤딩 해석 비교)

  • Park, Sung-Min;Shin, Dong-Woo;Kwon, Il-Jun;Yoo, Sung-Hun;Moon, Wan-Kee
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.378-382
    • /
    • 2015
  • With increasing population density and high-rise expansion of buildings in recent years, elevators have become to play a pivotal role in our everyday lives as most people take an elevator several times even in a day. The elevator penetration and distribution rates in Korea have increased dramatically every year, and the emergence of skyscrapers leads to accelerating the development of elevator industry. Carbon-fiber-reinforced plastics (CFRPs) exhibit better mechanical and thermal properties than steel suitable for uses as elevator wire ropes. In this paper, in order to analyze the properties of CFRPs, the tensile strength of unidirectional (UD) CFRP wire ropes was characterized and finite element analysis was conducted for bending simulation. Simulation results were compared.

Measurements of Defects after Machining CFRP Holes Using High Speed Line Scan (고속 라인 스캔 방식을 이용한 CFRP 가공 홀 표면 및 내부 결함 검사)

  • Kim, Teaggyum;Kyung, Daesu;Son, Unchul;Park, Sun-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.6
    • /
    • pp.459-467
    • /
    • 2016
  • Using a line scan camera and a Galvano mirror, we constructed a high-speed line-scanning microscope that can generate 2D images ($8000{\times}8000pixels$) without any moving parts. The line scanner consists of a Galvano mirror and a cylindrical lens, which creates a line focus that sweeps over the sample. The measured resolutions in the x (perpendicular to line focus) and y (parallel to line focus) directions are both $2{\mu}m$, with a 2X scan lens and a 3X relay lens. This optical system is useful for measuring defects, such as spalling, chipping, delamination, etc., on the surface of carbon fiber reinforced plastic (CFRP) holes after machining in conjunction with adjustments in the angle of LED lighting. Defects on the inner wall of holes are measured by line confocal laser scanning. This confocal method will be useful for analyzing defects after CFRP machining and for fast 3D image reconstruction.

The Static Collapse Characteristics of CFRP Single and Double Hat Shaped Section Members according to the Interface Number for Lightweight (경량화용 CFRP 단일 모자형 부재와 CFRP 이중 모자형 부재의 계면수 변화에 따른 정적압궤특성)

  • Hwang, Woo-Chae;Cha, Cheon-Seok;Yang, In-Young
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.20-25
    • /
    • 2012
  • Currently, the most important purpose in designing automobile is environment-friendly and safety performance aspect. CFRP(Carbon Fiber Reinforced Plastics) of the advanced composite materials as structure materials for vehicles, has a wide application in lightweight structural materials of air planes, ships and automobiles because of high strength and stiffness. In this study, experimental investigations are carried out for CFRP single and double hat shaped section member in order to study the effect of various stacking condition. They were cured by heating to the appropriate curing temperature($130^{\circ}C$) by means of a heater at the vacuum bag of the autoclave. The stacking conditions were selected to investigate the effect of the interface numbers. The CFRP single and double hat shaped section members which manufactured from unidirectional prepreg sheets were made of 8ply. The static collapse tests performed and the collapse mode and energy absorption capability were analyzed according to interface number.

Flexural Behavior of Reinforced Concrete Beams Strengthened by CFRP Plates (탄소섬유판으로 보강된 철근콘크리트 보의 휨거동해석)

  • Yang, Dong-Suk;Koh, Byung-Soon;Park, Sun-Kyu;You, Young-Chan;Choi, Ki-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.243-246
    • /
    • 2005
  • This paper focuses on the flexural behavior of RC beams externally reinforced using Carbon Fiber Reinforced Plastics plates (CFRP). A non-linear finite element (FE) analysis is proposed in order to complete the experimental analysis of the flexural behaviour of the beams. This paper is a part of a complete program aiming to set up design formulate to predict the strength of CFRP strengthened beams, particularly when premature failure through plates-end shear or concrete cover delamination occurs. An elasto-plastic behaviour is assumed for reinforced concrete and interface elements are used to model the bond and slip.

  • PDF

A Study on the Fracture Characteristics of CFRP by Acoustic Emission (2) (음향방출법에 의한 탄소섬유강화 플라스틱의 파괴특성에 관한 연구 (2))

  • 윤종희;이장규;박성완;우창기;김봉각;조진호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.58-63
    • /
    • 2004
  • This study is to investigate a fracture characteristics of carbon fiber reinforced plastics (CFRP) under the tensile loading as a function of acoustic emission (AE) according to the frequency analysis (transient mode) and AE source location (location mode). It was found that the fracture mechanism of AE frequency analysis was a useful tool for the estimation of different type of fracture in CFRP, i.e., matrix(epoxy resin) cracking, delamitation and fiber breakage same as AE amplitude distribution.

  • PDF