• Title/Summary/Keyword: Carbon Fiber Reinforced Plastic Composite

Search Result 167, Processing Time 0.021 seconds

The Recovery of Carbon Fiber from Carbon Fiber Reinforced Epoxy Composites for Train Body (철도차량용 폐 복합소재에서의 탄소섬유 회수)

  • Lee, Suk-Ho;Lee, Cheul-Kyu;Kim, Yong-Ki;Kim, Jung-Seok;Ju, Chang-Sik
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.406-415
    • /
    • 2008
  • Recently, the amount of thermosetting plastic wastes have increased with the production of reinforced plastic composites and causes serious environmental problems. The epoxy composites, one of the versatile thermosetting plastics with excellent properties, cannot be melted down and remolded as what is done in the thermoplastic industry. In this research, a series of experiments that recovers carbon fibers from carbon fiber reinforced epoxy composites for train body was performed. We experimentally examined various decomposition processes and compared their decomposition efficiencies and mechanical property of recovered carbon fibers. For the prevention of tangle of recovered carbon fibers, each composites specimen was fixed with a Teflon supporter and no mechanical mixing was applied. Decomposition products were analyzed by scanning electron microscope (SEM), gas chromatography mass spectrometer (GC-MS), and universal testing machine (UTM). Carbon fibers could be completely recovered from decomposition process using nitric acid aqueous solution, liquid-phase thermal cracking and pyrolysis. The tensile strength losses of the recovered carbon fibers were less than 4%.

  • PDF

A Study on the Pultrusion of Hybrid Composite Tube (하이브리드 복합재료 튜브의 Pultrusion 성형공정연구)

  • 성대영;김태욱;이광주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.180-183
    • /
    • 2001
  • Glass fiber reinforced plastic(CFHP) tent pole fabricated by the pultrusion process with unidirectional glass fiber is two times as heavy as aluminum tent pole owing to the low specific modulus The first objective of this research is the design the high strength and light weight tent pole compete with. the second is the develope glass fiber carbon fiber hybrid tent pole pultrusion process. the third is the evaluate the mechanical properties of the hybrid tent pole compare to these of the duralumin tent pole.

  • PDF

Influence of laminated orientation on the mechanical and thermal characteristics of carbon-fiber reinforced plastics

  • Shin, Hee-Jae;Kwac, Lee-Ku;Lee, Min-Sang;Kim, Hong-Gun
    • Carbon letters
    • /
    • v.16 no.4
    • /
    • pp.241-246
    • /
    • 2015
  • Rapid industrial development in recent times has increased the demand for light-weight materials with high strength and structural integrity. In this context, carbon fiber-reinforced plastic (CFRP) composite materials are being extensively used. However, laminated CFRPs develop faults during impact because CFRPs are composed of mixed carbon fiber and epoxy. Moreover, their fracturing behavior is very complicated and difficult to interpret. In this paper, the effect of the direction of lamination in CFRP on the absorbed impact energy and impact strength were evaluated, including symmetric ply (0°/0°, −15°/+15°, −30°/+30°, −45°/+45°, and −90°/+90°) and asymmetric ply (0°/15°, 0°/30°, 0°/45°, and 0°/90°), through drop-weight impact tests. Further, the thermal properties of the specimens were measured using an infrared camera. Correlations between the absorbed impact energy, impact strength, and thermal properties as determined by the drop-weight impact tests were analyzed. These analyses revealed that the absorbed impact energy of the specimens with asymmetric laminated angles was greater than that of the specimens with symmetric laminated angles. In addition, the asymmetry ply absorbed more impact energy than the symmetric ply. Finally, the absorbed impact energy was inversely proportional to the thermal characteristics of the specimens.

Effect of Fiber Orientation on the Friction and Wear Properties of Epoxy-based Composites (섬유 방향에 따른 에폭시 기반 복합재의 마찰 및 마모 특성에 관한 연구)

  • An, Hyo-Seong;Khadem, Mahdi;Chun, Heoung-Jae;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.133-138
    • /
    • 2020
  • In this paper, we present an experimental investigation of the friction coefficient and wear area change of carbon/epoxy and E-glass/epoxy composites depending on the fiber direction (0°/90°). We compared the results of the case where the sliding direction is parallel to the fiber direction (0°) with that of the case where it is perpendicular to the fiber direction (90°). The ball-on-plate wear test equipment was used to cause wear in both directions. Two types of specimens were prepared with thicknesses of 3 mm-one made of carbon fiber reinforced plastic composite (CFRP) and the other of glass fiber reinforced plastic composite (GFRP). A normal force of 20 N was applied to the specimen and the sliding speed was 10 mm/s and the sliding distance was set to 20 m to perform the wear test. The CFRP demonstrates superior tribological characteristics compared to the GFRP. This outcome is attributed to graphitization of carbon, which serves as solid lubricating particles. In addition, both CFRP and GFRP are worn more in the 90° direction than in the 0° direction. This is due to the greater occurrence of fiber breakage and separation in the 90° direction than in the 0° direction. This study is expected to be utilized as basic data for understanding the friction and wear characteristics of CFRP and GFRP composites along the fiber direction and to apply the appropriate material.

Comparison Study on Side Milling of CFRP with AlCrN-based, Diamond-Like-Carbon(DLC), and Diamond-Coated End Mill (AlCrN, DLC 및 다이아몬드 코팅 엔드밀을 이용한 탄소섬유복합소재의 측면 밀링에 관한 비교 연구)

  • Sa, Min-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.9-15
    • /
    • 2020
  • Carbon fiber reinforced plastic (CFRP) is a composite material useful in the aerospace and automotive industries because of its light weight and high strength. In this study, side milling tests were carried out using AlCrN, diamond-like carbon (DLC), and diamond-coated end mills. Additionally, a comparison study according to the cobalt content was conducted. Thus, tool wear and surface quality were examined and the influences of using coating and a certain material type were analyzed. The surface roughness of the machined surface was measured. Microscope observations revealed that the CFRP fiber at the machined surface was not damaged even at a cutting distance of 3,000 mm. Therefore, this study showed that the diamond-coated end mill containing 6% cobalt is appropriate for milling CFRP.

An Estimation of Deformation for Composites by DIC (DIC에 의한 복합재료 변형측정)

  • Kwon, Oh-Heon;Kang, Ji-Woong
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.78-84
    • /
    • 2014
  • The estimation of deformation and strain for the twill-weave carbon fiber reinforced plastic composite(CFRP) during the test with a digital image correlation system were implemented experimentally. The carbon fiber reinforced plastic composites have been developed as the edge technology materials. The plain, twill and satin weave types are commonly used for the CFRP composites. Thus, it is essential to find the deformation characteristics for those types of CFRP more easily. Especially the DIC method can express the visual strain distributions at the full range of the interested areas in the structures. In this study, the mechanical properties of twill-weave CFRP composite and the variation of strains in a full field of the specimen were estimated. The experiments were performed under a tensile loading and 3-point bending test with strain gages. Futhermore the DIC deformation results were estimated for the comparison. The results showed the deformation and strain contours visually well in all region of the interested areas and so usefulness for the safety control of the structures.

A Study on Tensile Property due to Stacking Structure by Fiber Design of CT Specimen Composed of CFRP (CFRP로 구성된 CT시험편의 섬유설계에 의한 적층구조에 따른 인장 특성 연구)

  • Hwang, Gue-Wan;Cho, Jae-Ung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.11
    • /
    • pp.447-455
    • /
    • 2017
  • At the modern industry, the composite material has been widely used. Particularly, the material of carbon fiber reinforced plastic hardened with resin on the basis of fiber is excellent. As the specific strength and rigidity are also superior, it receives attention as the light material. Among these materials, the carbon fiber reinforced plastic using carbon fiber has the superior mechanical property different from another fiber. So, it is utilized in vehicle and airplane at which high strength and light weight are needed at the same time. In this paper, the tensile property due to the fiber design is investigated through the analysis study with CT specimen composed of carbon plastic reinforced plastic. At the stress analysis of CFRP composite material with hole, the fracture trend at the tensile environment is examined. Also, it is shown that the lowest stress value happens and the deformation energy of the pre-crack becomes lowest at the analysis model composed of the stacking angle of 60° through the result due to the stacking angle. On the basis of this study result, it is thought to apply the foundation data to anticipate the fracture configuration at the structure applied with the practical experiment.

Fracture behavior using AE method and reliability assessment of CFRP based on absorbed moisture (흡습된 CFRP의 AE에 의한 파과거동과 신뢰성 평가)

  • 남기우;김선진
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.38-50
    • /
    • 1996
  • Recently carbon fiber reinforced plastic (CFRP) has been used structural materials in corrosive environment such as for water, chemical tank and pipes. However, mechanical properties of such materials may be change when CFRP and exposed to corrosive environment for long periods of time. The degradation behavior of carbon fiber/epoxy resin composite material in distilled water is investigated using acoustic emission (AE) technique, Fracture toughness tests are performed on the compact tension specimens that are pilled by two types of $[O_2/9O_2]_{3s}$ and $[O/9O]_6s$. During the testes, AE test was carried out to monitor the damage of CFRP by moisture absorption. The data was treated by 2-parameter Weibull distribution and the fracture surface was observed by scanning electron microscope.

  • PDF

A Study on Energy Absorption Characteristics of Lightweight Structural Member according to Stacking Conditions (적층구성 변화에 따른 경량화 구조부재의 에너지 흡수 특성)

  • Choi, Ju-Ho;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.241-245
    • /
    • 2012
  • In this study, one type of circular shaped composite tube was used, combined with reinforcing foam and without foam. Furthermore, CFRP (Carbon Fiber Reinforced Plastic) circular member manufactured from CFRP prepreg sheet for lightweight design. CFRP is an anisotropic material which is the most widely adapted lightweight structural member. The crashworthy behavior of circular composite material tubes subjected to static axial compression under same conditions is reported in this paper. The collapse mode during the failure process were observed and analyzed. The behavior of polymeric foams to the tubes crashworthiness were also investigated.

Fabrication and Characterization of the Carbon Fiber Composite Sheets (탄소섬유를 이용한 열가소성 복합재료 시트 제조 및 특성)

  • Lee, Yun-Seon;Song, Seung-A;Kim, Wan Jin;Kim, Seong-Su;Jung, Yong-Sik
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.168-175
    • /
    • 2015
  • Recently, the applications of carbon fiber reinforced plastics (CFRPs) have become broader than ever when it comes to such industries as automotive, ships, aerospace and military because of their lightweight-ness and high mechanical properties. Thermosetting plastics like epoxy are frequently used as the binding matrix in CFRPs due to their high hardness, wetting characteristics and low viscosity. However, they cannot melted and remolded. For this reason, thermosetting plastic wastes have caused serious environmental problems with the production of fiber reinforced plastics. Thus, many studies have focused on the carbon fiber reinforced thermoplastics (CFRTPs) and recycling carbon fiber. In this study, recycled carbon fiber (RCF) was prepared from CFRPs using a pyrolysis method, which was employed to separate resin and carbon fiber. The degree of decomposition for epoxy resin was confirmed from thermal gravimetric analysis (TGA) and scanning electron microscope (SEM). The RCF was cut and ground to prepare a carbon fiber composite sheet (CFCS). CFCS was manufactured by applying recycled carbon fibers and various thermoplastic fibers. Various characterizations were performed, including morphological analyses of surface and cross-section, mechanical properties, and crystallization enthalpy of CFCS at different cooling conditions.