• Title/Summary/Keyword: Carbon Dioxide Removal

Search Result 198, Processing Time 0.027 seconds

Degradation of Ethylene by a Biofilter (Biofiter를 이용한 에틸렌 분해)

  • 김종오
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.3
    • /
    • pp.269-276
    • /
    • 2001
  • The objective of this study was to investigate the biodegradation of ethylene in an biofilter inoculated with ethylene-oxidizing microorganisms. The biofilter performance was monitored in terms of ethylene removal efficiency and carbon dioxide production. The biofilter was capable of achieving the ethylene removal efficiency as much as 100% at a residence time of 14 min and an inlet concentration of 290 ppm. Under the same conditions, carbon dioxide with a concentration of up to 546 ppm was produced. It was found that carbon dioxide was produced at a rate of 87 mg/day, which corresponded to a volume of 0.05 L/day. Observable features of the ethylene-oxidizing microorganisms, meaning microbial activity occurrence in the biofilter, were investigated with the microscopy analysis.

  • PDF

The Removal of Si3N4 Particles from the Wafer Surface Using Supercritical Carbon Dioxide Cleaning (웨이퍼 표면의 Si3N4 파티클 제거를 위한 초임계 이산화탄소 세정)

  • Kim, Yong Hun;Choi, Hae Won;Kang, Ki Moon;Karakin, Anton;Lim, Kwon Teak
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.157-165
    • /
    • 2018
  • In this study, the removal of $Si_3N_4$ particles from the surface of a silicon wafer was investigated by using supercritical carbon dioxide, the IPA co-solvent and cleaning additive chemicals. First, the solubility of several surfactants and binders in supercritical carbon dioxide solubility and particle dispersibility in the binders were evaluated in order to confirm their suitability for the supercritical cleaning process. Particle removal experiments were carried out with adjusting various process parameters and reaction conditions. The surfactants used in the experiment showed little particle removal effect, producing secondary contamination on the surface of wafers. On the other hand, 5 wt% (with respect to $scCO_2$) of the cleaning additive mixture of trimethyl phosphate, IPA, and trace HF resulted in 85% of particle removal efficiency after $scCO_2$ flowing for 4 minutes at $50^{\circ}C$, 2000 psi, and the flow rate of $15mL\;min^{-1}$.

Effect of LED Light Quality Treatment on the Functional Optimization of Foliage Plant (LED 광질이 관엽식물의 기능성 최적화에 미치는 영향)

  • Kim, Myung-Seon;Chae, Soo-Cheon;Ann, Seoung-Won;Choi, Won-Chun;Lee, Myung-Won;Lee, Kook-Han;Liu, Xiao-Ming
    • Journal of Environmental Science International
    • /
    • v.21 no.5
    • /
    • pp.633-640
    • /
    • 2012
  • White light and compound light were found to be the ideal light sources for improving the functionality and ornamental value of indoor plants and reducing the cost of maintenance, but because compound light hinders people from recognizing the original color of plants and makes their eyes easily tired, white light was considered the optimal light satisfying all of the ornamental value, economic efficiency and functionality resulting from plant growth. On the other hand, in the results of examining physiological changes before and after treatment on fine dust PM10 and carbon dioxide removal capacity in a closed chamber under an artificial light source, the patterns of carbon dioxide and fine dust removal were similar among the treatment groups according to light condition, but according to plant type, the removal rate per unit leaf area was highest in $Spathiphyllum$ and lowest in $Dieffenbachia$. In the experiment on dust and carbon dioxide removal, the photosynthetic rate was over 2 times higher after the treatment, and the rate increased particularly markedly under compound light and white light, suggesting that the photosynthetic rate of plants increases differently according to light quality. These results show that light quality has a significant effect on the photosynthetic rate of plants, and suggests that plants with a high photosynthetic rate also have a high carbon dioxide and dust removal capacity. In conclusion, the photosynthetic rate of foliage plants increased under white and blue light that affect photosynthesis and the increased photosynthetic rate reduced carbon dioxide and fine dust, and therefore white and compound light were found to be the optimal light sources most functional and economically efficient in improving ornamental value and indoor air quality.

The Distribution Characteristics of Carbon Dioxide in Indoor School Spaces (교육시설 실내공간의 이산화탄소 농도분포 특성 연구)

  • Cho, Young-Min;Lee, Ji-Yun;Kwon, Soon-Bark;Park, Duck-Shin;Park, Jae-Hyoung;Cho, Ki-Chul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.1
    • /
    • pp.117-125
    • /
    • 2011
  • There are many studies reporting the average carbon dioxide levels in various indoor spaces. However, there have been a few studies showing how carbon dioxide concentration varied at many measurement points in one indoor space. In this study, the changes of indoor carbon dioxide concentration at classroom, library, and kindergarten were reported to find its carbon dioxide distribution change at various locations and altitudes. The maximum carbon dioxide concentration of the 3 sites were measured as 2,684, 2,295, and 1,526 ppm, respectively. These values exceeded the guideline concentration of 1,000 ppm for public places. The concentration of carbon dioxide was higher at upper area than lower area, and this is probably due to the rise of warm breathing air generated from students. In the upper area, the carbon dioxide concentration was higher at center area than four corners. However, in the lower area, the carbon dioxide concentration was higher at four corners than center area. Therefore, it could be concluded that the center of upper area is the best place for the installation of ventilation or carbon dioxide removal system.

Study on development of Smart ventilation system using a adsorbent for the removal of CO2 (CO2 제거용 흡착제를 이용한 스마트 환기시스템 개발 연구)

  • Shin, Jae-Ran;Moon, Sung-Ho;Kim, Jae-Kang;Choi, Jin-Sik;Lim, Yun-Hui;Park, Byung-Hyun;Lee, Ju-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.578-582
    • /
    • 2015
  • In this study, We evaluated the efficiency of the smart ventilation system being developed at the test-bed(KCL). Smart ventilation system improve the indoor air quality by absorbing carbon dioxide. It is reducing the infusion of outside air can be reduced to minimum energy consumption. To evaluate the energy savings and carbon dioxide removal efficiency. It was more effective when working with air conditioning and ventilation system at the same time.

Separation of Protein and Fatty Acids from Tuna Viscera Using Supercritical Carbon Dioxide

  • Kang Kil-Yoon;Ahn Dong-Hyun;Jung Sun-Mi;Kim Dong-Hun;Chun Byung-Soo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.315-321
    • /
    • 2005
  • Supercritical carbon dioxide extraction was investigated as a method for removing lipids and bad flavor from tuna viscera. To find the optimum conditions, different experimental variables, such as pressure, temperature, flow rate of solvent and sample size, were evaluated for the effective removal of lipids and the undesirable smell. Ethanol was used as the entrainer, with a $3\%$ by vol $CO_2$ flow rate. By increasing the pressure at constant temperature, the efficiency of the lipid removal was improved and the protein was concentrated without denaturalization. The main fatty acids extracted from the tuna viscera were palmitic acid (16:0), heptadecanoic acid (17:1), oleic acid (18:1) and docosahexaenoic acid (22:6). The major amino acids in the tuna viscera treated by supercritical carbon dioxide were glutamic acid, leucine and lysine, and the free amino acids were L-proline, taurine and L-$\alpha$-aminoadipic acid.

Review on the Removal of Benzene and Ethylene by a Biofilter (바이오 필터에 의한 벤젠과 에틸렌 처리실험에 대한 고찰)

  • 김종오;이우범
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.3
    • /
    • pp.325-331
    • /
    • 2003
  • A biofilter study was conducted by changing inlet concentration and residence time for the removal of gaseous benzene and ethylene. In addition, carbon dioxide produced from the biofilters was investigated. Over 96% of benzene was removed at the residence times of 2 and 4.3 min, and inlet benzene concentrations of 220∼300 ppm. The ethylene biofilter was capable of achieving ethylene removal efficiency as much as 100% at a residence time of 14 min, and inlet concentrations of 99∼290 ppm. At a steady state, the carbon dioxide of 409∼611 ppm was produced with an ethylene inlet concentration of 290 ppm. Most of benzene and ethylene were degraded at lower part of the biofilters where more microbial activity occurred.

Efficiency Evaluation of Adsorbents for the Removal of VOC and NO2 in an Underground Subway Station

  • Son, Youn-Suk;Kang, Young-Hoon;Chung, Sang-Gwi;Park, Hyun-Ju;Kim, Jo-Chun
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.2
    • /
    • pp.113-120
    • /
    • 2011
  • Adsorbent combination studies have been carried out to remove nitrogen dioxide ($NO_2$) and volatile organic compounds (VOCs: BTEX) out of a subway environment characterized by high flow and low concentration. Optimal conditions for the high removal efficiency of the concerned target compounds were obtained through testing a series of control factors such as adsorbent sorts, thicknesses, and superficial velocity. It was found that the efficiencies increased as the specific surface area of activated carbon and its thickness increased, and external void fraction decreased. Furthermore, mixed activated carbon with granular and constructed contents was extensively tested to reduce pressure drop through the carbon bed. It was found that the performance of higher contents of granular activated carbon was better than that of higher contents of the constructed carbon. When the mixed carbon was applied to the subway ventilation system in order to eliminate $NO_2$ and VOC simultaneously, the removal efficiencies were found to be 75% and 85%, respectively.

Carbon dioxide LASER-aided management of oral mucosal diseases (이산화탄소(CO2) 레이저로 치료하면 좋은 구강점막질환)

  • Byun, Jin-Seok
    • The Journal of the Korean dental association
    • /
    • v.56 no.7
    • /
    • pp.391-397
    • /
    • 2018
  • Mess removal, electrocoagulation, cryosurgery are conventional methods in the treatment of various oral mucosal diseases. However, there are several problems or complication during or after surgery using conventional tools. Recently, LASER gradually become useful tool in the surgery of oral mucosal diseases. Of the LASER, carbon dioxide-mediated LASER is widely used one. Carbon dioxide LASER has many advantages such as good bleeding control, decreased damage to adjacent tissue, decreased pain and swelling, reduced scar formation, even bacteriocidal effects. In this reports, the author describe pros and cons of LASER, especially focused on carbon dioxide, and shed light on the field of LASER application in treatment of various oral mucosal diseases.

  • PDF

Development of Adsorbent for Radioactive Carbon Dioxide (고효율 방사성이산화탄소 흡착제 개발)

  • 지준화;강덕원;이재의;한재욱
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.158-161
    • /
    • 2003
  • To develop an effective adsorbent for radio active Carbon Dioxide, $^14CO_2$, which is discharged to nearby atmosphere from nuclear power plants of CANDU type, we made some preliminary adsorbents and tested their abilities of $CO_2$ removal. The chemical agents used was LiOH and we supported or impregnated it on the surface or the internal volume of activated Carbon(GW-H). The physical and chemical properties of various adsorbents were measured using methods such as XRD, BET. SEM images were taken to investigate the change of surface morphology of the adsorbents. Finally, amount of $CO_2$ adsorption of them were verified under specific conditions. We found that mechanical mixing of LiOH and activated Carbon showed the maximum $CO_2$ removal ability, while surface activation of activated Carbon by Nitric Acid-treatment enhanced its $CO_2$ removal efficiency to some degree.

  • PDF