• Title/Summary/Keyword: Carbon Dioxide,

Search Result 3,627, Processing Time 0.029 seconds

Evaluation of Greenhouse Gas Emissions in Cropland Sector on Local Government Levels based on 2006 IPCC Guideline (2006 IPCC 가이드라인을 적용한 지자체별 경종부문 온실가스 배출량 평가)

  • Jeong, Hyun-Cheol;Kim, Gun-Yeob;Lee, Seul-Bi;Lee, Jong-Sik;Lee, Jung-Hwan;So, Kyu-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.842-847
    • /
    • 2012
  • This study was conducted to estimate the greenhouse gas emissions on local government levels from 1990 to 2010 using 2006 IPCC guideline methodology. To calculate greenhouse gas emissions based on the 16 local governments, emission factor and scaling factor were used with default value and activity data came from the food, agricultural, forestry and fisheries statistical yearbook of MIFAFF (Ministry for Food, Agriculture, Forestry, and Fisheries). The total emissions in crop sector gradually decreased from 1990 to 2010 due to a decline in agricultural land and nitrogen fertilizer usage. The annual average emission of greenhouse gas was the highest in Jeonnam (JN) with 1,698 Gg $CO_2$-eq and following Chungnam (CN), Gyungbuk (GB), Jeonbuk (JB) and Gyunggi (GG). The sum of top-six locals emission had occupied 83.4% of the total emission in cropland sector. The annual average emissions in 1990 by applying 2006 IPCC guideline were approximately 43% less than the national greenhouse gas inventory by 1996 IPCC guideline. Jeonnam (JN) province occupied also the highest results of greenhouse gas emission estimated by gas types (methane, nitrous oxide and carbon dioxide) and emission sources such as rice cultivation, agricultural soil, field burning of crop residue and urea fertilizer.

Estimated Gas Concentrations of MA(Modified Atmosphere) and Changes of Quality Characteristics during the MA Storage on the Oyster Mushrooms (느타리버섯의 환경기체조성 농도 예측 및 MA 저장 중 품질특성 변화)

  • Lee, Hyun-Dong;Yoon, Hong-Sun;Lee, Won-Og;Jung, Hoon;Cho, Kwang-Hwan;Park, Won-Kyu
    • Food Science and Preservation
    • /
    • v.10 no.1
    • /
    • pp.16-22
    • /
    • 2003
  • This study was conducted to find out effective MA (Modified Atmosphere) gas compositions on the oyster mushroom through statistical analysis of the respiration rate and MA storage for the various packaging materials. Under the various gas compositions, the oxygen consumption rate of oyster mushroom was from 28.9 to 161.4mgO$_2$/kg$.$hr and the carbon dioxide evolution rate was from 53.4 to 166.9 mgCO$_2$/kg$.$hr at 20$^{\circ}C$. The estimated MA condition of oyster mushroom were 2.5∼4.5%O$_2$and 11.5∼l3%CO$_2$by the RSREG(Response Surface Regression). The gas compositions of MA packaging are following that 0.03mm LDPE were 1.6∼3.0%O$_2$and 3.9∼5.3%CO$_2$,0.05mm LDPE were 1.2∼1.3%O$_2$and 9.0∼11.1%CO$_2$and Nylon+PE were 0.9∼1.2%O$_2$and 33.5∼39.6%CO$_2$. The weight loss increased at 0.03mm LDPE but has the lowest value at Nylon+PE. The hardness of pileus and stipe was decreased with storage periods. The $\Delta$E-value increased with storage period and seriously changed in early storage period at 12 and 20$^{\circ}C$. In the 0.05mm LDPE, the gas compositions of packaging were similar to estimated gas compositions from the RSREG and the storage quality was superior to the other packaging materials in weight loss, hardness, and color difference at 4, 12 and 20 $^{\circ}C$.

Velocity-effective stress response of $CO_2$-saturated sandstones ($CO_2$로 포화된 사암의 속도-유효응력 반응)

  • Siggins, Anthony F.
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.60-66
    • /
    • 2006
  • Three differing sandstones, two synthetic and one field sample, have been tested ultrasonically under a range of confining pressures and pore pressures representative of in-situ reservoir pressures. These sandstones include: a synthetic sandstone with calcite intergranular cement produced using the CSIRO Calcite In-situ Precipitation Process (CIPS); a synthetic sandstone with silica intergranular cement; and a core sample from the Otway Basin Waarre Formation, Boggy Creek 1 well, from the target lithology for a trial $CO_2$ pilot project. Initial testing was carried on the cores at "room-dried" conditions, with confining pressures up to 65 MPa in steps of 5 MPa. All cores were then flooded with $CO_2$, initially in the gas phase at 6 MPa, $22^{\circ}C$, then with liquid-phase $CO_2$ at a temperature of $22^{\circ}C$ and pressures from 7 MPa to 17 MPa in steps of 5 MPa. Confining pressures varied from 10 MPa to 65 MPa. Ultrasonic waveforms for both P- and S-waves were recorded at each effective pressure increment. Velocity versus effective pressure responses were calculated from the experimental data for both P- and S-waves. Attenuations $(1/Q_p)$ were calculated from the waveform data using spectral ratio methods. Theoretical calculations of velocity as a function of effective pressure for each sandstone were made using the $CO_2$ pressure-density and $CO_2$ bulk modulus-pressure phase diagrams and Gassmann effective medium theory. Flooding the cores with gaseous phase $CO_2$ produced negligible change in velocity-effective stress relationships compared to the dry state (air saturated). Flooding with liquid-phase $CO_2$ at various pore pressures lowered velocities by approximately 8% on average compared to the air-saturated state. Attenuations increased with liquid-phase $CO_2$ flooding compared to the air-saturated case. Experimental data agreed with the Gassmann calculations at high effective pressures. The "critical" effective pressure, at which agreement with theory occurred, varied with sandstone type. Discrepancies are thought to be due to differing micro-crack populations in the microstructure of each sandstone type. The agreement with theory at high effective pressures is significant and gives some confidence in predicting seismic behaviour under field conditions when $CO_2$ is injected.

Theoretical Study on Optimal Conditions for Absorbent Regeneration in CO2 Absorption Process (이산화탄소 흡수 공정에서 흡수액 최적 재생 조건에 대한 이론적 고찰)

  • Park, Sungyoul
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1002-1007
    • /
    • 2012
  • The considerable portion of energy demand has been satisfied by the combustion of fossil fuel and the consequent $CO_2$ emission was considered as a main cause of global warming. As a technology option for $CO_2$ emission mitigation, absorption process has been used in $CO_2$ capture from large scale emission sources. To set up optimal operating parameters in $CO_2$ absorption and solvent regeneration units are important for the better performance of the whole $CO_2$ absorption plant. Optimal operating parameters are usually selected through a lot of actual operation data. However theoretical approach are also useful because the arbitrary change of process parameters often limited for the stability of process operation. In this paper, a theoretical approach based on vapor-liquid equilibrium was proposed to estimate optimal operating conditions of $CO_2$ absorption process. Two $CO_2$ absorption processes using 12 wt% aqueous $NH_3$ solution and 20 wt% aqueous MEA solution were investigated in this theoretical estimation of optimal operating conditions. The results showed that $CO_2$ loading of rich absorbent should be kept below 0.4 in case of 12 wt% aqueous $NH_3$ solution for $CO_2$ absorption but there was no limitation of $CO_2$ loading in case of 20 wt% aqueous MEA solution for $CO_2$ absorption. The optimal regeneration temperature was determined by theoretical approach based on $CO_2$ loadings of rich and lean absorbent, which determined to satisfy the amount of absorbed $CO_2$. The amount of heating medium at optimal regeneration temperature is also determined to meet the difference of $CO_2$ loading between rich and lean absorbent. It could be confirmed that the theoretical approach, which accurately estimate the optimal regeneration conditions of lab scale $CO_2$ absorption using 12 wt% aqueous $NH_3$ solution could estimate those of 20 wt% aqueous MEA solution and could be used for the design and operation of $CO_2$ absorption process using chemical absorbent.

Investigation of Plugging and Wastage of Narrow Sodium Channels by Sodium and Carbon Dioxide Interaction (소듐과 이산화탄소 반응에 의한 소듐유로막힘 및 재료손상 현상 연구)

  • Park, Sun Hee;Min, Jae Hong;Lee, Tae-Ho;Wi, Myung-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.863-870
    • /
    • 2016
  • We investigated the physical/chemical phenomena that a slow loss of $CO_2$ inventory into sodium after the sodium-$CO_2$ boundary failure in printed circuit heat exchangers (PCHEs), which is considered for the supercritical $CO_2$ Brayton cycle power conversion system of a sodium-cooled fast reactor (SFR). The first phenomenon is plugging inside narrow sodium channels by micro cracks and the other one is damage propagation referred to as wastage combined with the corrosion/erosion effect. Experimental results of plugging shows that sodium flow immediately stopped as $CO_2$ was injected through the nozzle at $300{\sim}400^{\circ}C$ in 3 mmID sodium channels, whereas sodium flow stopped about 60 min after $CO_2$ injection in 5 mmID sodium channels. These results imply that if pressure boundary of sodium-$CO_2$ fails a narrow sodium channel would be plugged by reaction products in a short time whereas a relatively wider sodium channel would be plugged with higher concentration of reaction products. Wastage by the erosion effect of $CO_2$ (200~250 bar) hardly occurred regardless of the kinds of materials (stainless steel 316, Inconel 600, and 9Cr-1Mo steel), temperature ($400{\sim}500^{\circ}C$), or the diameter of the $CO_2$ nozzle (0.2~0.8 mm). Velocities at the $CO_2$ nozzle were specified as Mach 0.4~0.7. Our experimental results are expected to be used for determining the design parameters of PCHEs for their safeties.

Photosynthetic Response of Foliage Plants Related to Light Intensity, $CO_2$ Concentration, and Growing Medium for the Improvement of Indoor Environment (실내 환경 개선을 위한 광도, 이산화탄소 농도 및 배지 종류에 따른 실내 관엽식물들의 광합성 반응)

  • Park, Sin-Ae;Kim, Min-Gi;Yoo, Mung-Hwa;Oh, Myung-Min;Son, Ki-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.203-209
    • /
    • 2010
  • This study was performed to investigate photosynthetic responses of 4 foliage plants in relation to light intensity, carbon dioxide concentration, and media, and to select efficient plants for the indoor environment control based on the results. Four foliage plants used in this study included Syngonium podophyllum, Schefflera arboricola cv. Hong Kong, Dieffenbachia amoena, and Dracaena deremensis cv. Warneckii Compacta. The plants cultivated in two different growth media, peatmoss and hydroball, and subjected to various light intensities (0, 30, 50, 80, 100, 200, 400, and $600\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD) and $CO_2$ levels (0, 50, 100, 200, 400, 700, 1000, and $1500\;{\mu}mol{CO_2}{\cdot}mol^{-1}$). As a result of the photosynthetic rate of foliage plants according to change of light intensity and $CO_2$ levels, Schefflera arboricola and Dieffenbachia amoena showed high apparent quantum yield, which stands for the photosynthetic rate under low light intensity, and both plants also recorded higher photosynthetic rate under high $CO_2$ concentration compared to the other two indoor plants. Dracaena deremensis showed the lowest photosynthetic rate under the low light intensity or high $CO_2$ concentration. There were inconsistent results in photosynthetic rate of foliage plants grown in peatmoss or hydroball. Higher photosynthetic rate was observed in Schefflera arboricola with peatmoss rather than hydroball as light and $CO_2$ concentration increased. However, hydroball had a positive effect on Dieffenbachia amoena in terms of photosynthetic rate. In case of Syngonium podophyllum, peatmoss induced higher photosynthetic rate according to increased light intensity, but there was no effect of media on the rate under various $CO_2$ treatements. In contrast, media did not affect to photosynthetic efficiency of Dracaena deremensis subjected to various light intensities and the rate of Dracaena deremensis with peatmoss was a little high when $CO_2$ concentration increased. In conclusion, potential plants for the indoor air pulification and environmental control were Schefflera arboricola and Dieffenbachia amoena because they showed high photosynthetic rate under typical indoor conditions, low light intensity and high $CO_2$ concentration.

An Comparison of Storability of Several Cultivars Chicon Grown in Different Regions (품종과 재배지역에 따른 치콘의 저장성 비교)

  • Kang, Ho-Min;Kim, Hyuk-Su;Seo, Hyun-Taek;Won, Jae-Hee
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.291-296
    • /
    • 2009
  • This study was conducted to compare the storability of 6 chicory cultivars for producing chicon; 'Vintor', 'Focus', 'Metafora', 'Kibora', 'Nobus', and 'Redoria Red' grown in 2 regions: Chuncheon (plain region) and Pyeongchang (high land region). Chicons were produced from chicory roots that grown for 120days and then stored for over 120days at $2^{\circ}C$ and 90% of RH conditions. To produce chicon, chicory root was forced at $18^{\circ}C$ for 22days with suppling the nutrient solution ($KNO_30.54g{\cdot}L^{-1}$, $Ca(NO_3)_2\;1.02g{\cdot}L^{-1}$, $MgSO_4\;0.36g{\cdot}L^{-1}$, $KH_2PO_4\;0.21g{\cdot}L^{-1}$, $K_2SO_4\;0.10g{\cdot}L^{-1}$, pH 7.0). Chicons produced from 6 different chicory cultivars packed with $25{\mu}m$ ceramic film and stored for 25days at $8^{\circ}C$. The fresh weight of chicon in MAP was maintained to 99.5% of pre-storage weight. The fresh weight of 'Redoria Red' was lowest in all cultivars, and that of Chuncheon region cultivated treatment was lower than Pyeongchang treatment. The $CO_2$ and $O_2$ concentration in chicon MAP were 2% and $10{\sim}17%$. There were not significantly different among cultivars and between regions, although 'Redoria Red' cultivar showed highest $CO_2$ and lowest $O_2$ concentrations. The ethylene concentration in chicon MAP was $1.0{\mu}{\iota}{\cdot}{\iota}^{-1}$ and also didn't show any significant difference among all treatments. Chicon detoriorated visual quality with appearing russet spotting that result from ethylene gas. The visual quality of 'Redoria Red' cultivar decreased faster than the other cultivars. 'Metafora', 'Focus', and 'Kibora' maintained higher firmness of their leaf than the others, and the firmness was higher grown in Pyeongchang region cultivated treatments than in Chuncheon region.

Selection of Non-Perforated Breathable Film to Enhance Storability of Cherry Tomato for Modified Atmosphere Storage at Different Temperatures (방울토마토의 MA 저장성 향상을 위한 비천공 breathable 필름 구명)

  • Islam, Mohammad Zahirul;Mele, Mahmuda Akter;Lee, Han Jong;Lee, Kyoung Soo;Hong, Sung Mi;Jeong, Min Jae;Kim, Il-Seop;Hong, Soon-Kwan;Choi, In-Lee;Baek, Jun Pill;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.116-122
    • /
    • 2014
  • This study was conducted to find out the appropriate packaging materials to extend the storability and maintain the quality of cherry tomato for modified atmosphere (MA) storage. Tomatoes were grown by hydroponic at a plastic house in Gangwon Province. Light red maturity stage tomatoes were harvested and packed with MA condition (10,000; 20,000; 40,000; 60,000; 80,000; and $100,000cc/m^2.day.atm$ $O_2$ permeability film) and perforated film to store at $5^{\circ}C$, $11^{\circ}C$ and $24^{\circ}C$. The fresh weight loss was less than 0.6% in all non-perforated breathable films at $^5{\circ}C$, $11^{\circ}C$, and $24^{\circ}C$, but perforated film had less than 2.93% at $5^{\circ}C$, 13.29% at $11^{\circ}C$ and 27.24% at $24^{\circ}C$. The 20,000cc at $5^{\circ}C$ and $11^{\circ}C$, and the 40,000cc film at $24^{\circ}C$ balanced optimum carbon dioxide and oxygen concentration in the package to maintain quality. The 10,000cc film was appeared the significantly highest ethylene concentration at $5^{\circ}C$, $11^{\circ}C$, and $24^{\circ}C$, this film had the lowest $O_2$ permeability. Visual quality, firmness, and soluble solids were maintained in 20,000cc films both at $5^{\circ}C$ and $11^{\circ}C$, the 40,000cc film at $24^{\circ}C$. There was no any trend in titratable acidity and vitamin C content of treated packed film types and temperatures at cherry tomatoes packages. Therefore, the appropriate MA condition for $5^{\circ}C$ and $11^{\circ}C$ is $20,000cc/m^2.day.atm$ $O_2$ permeability film; for $24^{\circ}C$ it is $40,000cc/m^2.day.atm$ $O_2$ permeability film because those films extended the storability through the firmness, soluble solids as well as visual quality.

Effect of Solid $CO_2$ Generator Treatment on Fruit Yield and Quality of Korean Melon(Cucumis melo var. hybrida) (탄산가스 발생제 처리가 참외의 품질 및 수량에 미치는 영향)

  • Shin, Yong Seub;Lee, Ji Eun;Kim, Min Ki;Cheung, Joung Do;Do, Han Woo;Park, Jong Uk;Kim, Jwoo Hwan;Park, Jong Tae;Lee, Soo Tak;Suh, Jun Kyu
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.83-87
    • /
    • 2014
  • The objective of this study was to examine the changes in carbon dioxide ($CO_2$) concentration due to application of solid $CO_2$ generator (Tansansol) in plastic greenhouses during winter cultivation of Korean melon. The experimental treatments consisted of four levels, namely, 0 (control) 10, 20 and 30bags with solid $CO_2$ generator per $600m^2$ of plastic greenhouse. $CO_2$ concentration in plots with solid gas generators was higher by 3.0-3.2% compared to control. Fruit weight, sugar content and color parameter were also enhanced due to application of solid $CO_2$ generator. The fraction of fermentated and unmarketable fruits were decreased by 2.9-3.9% and 5.4-7.3%, respectively, in plots where solid $CO_2$ generators were applied. The marketable yield increased by 10.3, 14.8 and 16.2% in plots with 10, 20 and 30bags with $CO_2$ generators, respectively. As a result, $CO_2$ concentration within the greenhouses was increased by applying $CO_2$ generators and it is positively affected the rate of photosynthesis.

Heating Performance Analysis of the Heat Pump System for Agricultural Facilities using the Waste Heat of the Thermal Power Plant as Heat Source (발전소 폐열을 이용한 농업시설용 히트펌프시스템의 난방 성능 분석)

  • Kang, Youn Koo;Kang, Suk Won;Paek, Yee;Kim, Young Hwa;Jang, Jae Kyung;Ryou, Young Sun
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.317-323
    • /
    • 2017
  • In this study, the heating performance and the energy saving effect of the heat pump system using hot waste water(waste heat) of the thermal power plant discharged from a thermal power plant to the sea were analyzed. The greenhouse area was $5,280m^2$ and scale of the heat pump system was 120 RT(Refrigeration Ton), which was divided into 30 RT, 40 RT and 50 RT. The heat pump system consisted of the roll type heat exchangers, hot waste water transfer pipes, heat pumps(30, 40, 50 RT), a heat storage tank and fan coil units. The roll type heat exchangers was made of PE(Poly Ethylene) pipes in consideration of low cost and durability against corrosion, because hot waste water(sea water) is highly corrosive. And the heating period was 5 months from October to February. During the heating performance test(12 hours), the inlet water temperature of evaporator was changed from $32^{\circ}C$ to $26^{\circ}C$, and heat absorption of he evaporator was changed from 175 kW to 120 kW. The inlet water temperature of the condenser rose linearly from $15^{\circ}C$ to $50^{\circ}C$, and the heat release of condenser was reduced by 40 kW from 200 kW to 160 kW. And the power consumption of the heat pump system increased from 30 kW to 42 kW. When the inlet water temperature of condenser was $15^{\circ}C$, the heating COP(Coefficient Of Performance) was over 7.0. When it was $30^{\circ}C$, it dropped to 5.0, and when it was above $40^{\circ}C$, it decreased to less than 4.0. It was analyzed that the reduction of heating energy cost was 87% when compared to the duty free diesel that the carbon dioxide emission reduction effect was 62% by recycling the waste heat of the thermal power plant as a heat source of the heat pump system.