• Title/Summary/Keyword: Carbon Adsorption

Search Result 1,567, Processing Time 0.026 seconds

Influence of Surface area, Surface Chemical Structure and Solution pH on the Adsorption of Pb(II) Ions on Activated Carbons

  • Goyal, Meenakshi;Amutha, R.
    • Carbon letters
    • /
    • v.7 no.2
    • /
    • pp.97-104
    • /
    • 2006
  • The influence of carbon surface area, carbon-oxygen groups associated with the carbon surface and the solution pH on the adsorption of Pb(II) ions from aqueous solutions has been studied using three activated carbons. The adsorption isotherms are Type I of BET classification and the data obeys Langmuir adsorption equation. The BET surface area has little effect on the adsorption while it is strongly influenced by the presence of acidic carbon oxygen surface groups. The amount of these surface groups was enhanced by oxidation of the carbons with different oxidizing agents and reduced by eliminating these groups on degassing at different temperatures. The adsorption of Pb(II) ions increases on each oxidation and decreases on degassing the oxidized carbons. The increase in adsorption on oxidation has been attributed to the formation of acidic carbon-oxygen surface groups and the decrease to the elimination of these acidic surface groups on degassing. The adsorption is also influenced by the pH of the aqueous solution. The adsorption is only small at pH values lower than 3 but is considerably larger at higher pH values. Suitable mechanisms consistent with the adsorption data have been suggested.

  • PDF

A Study on the Adsorption of Hg(II) Ion by Activated Carbon(1) (活性炭에 依한 Hg(II) 이온의 吸着에 관한 조사연구(1))

  • Lee, Hyun;Lee, Jong-Hang;Yun, O. Sub
    • Journal of Environmental Health Sciences
    • /
    • v.14 no.2
    • /
    • pp.65-71
    • /
    • 1988
  • In this study, the method of adsorption by activated carbon in the removal of Hg(II) ion in waste water was treated. The influence of kinds of activated carbon and effect of temperature and the influence of coexistent salt on adsorption rates, the influence of pH in the adsorption, equilibrium and adsorption of mercury from activated carbon were investigated. From the adsorption on activated carbon of mercury(II) ion in the presence of cyanide or thiocyanate ion was found that mercury(II) was easily adsorved onto the activated carbon in the form of complex artion such as Hg(CN)$_4^{2-}$, Hg(SCN)$_4^{2-}$ respectively. ZnCl$_2$ activation method had a higher adsorptive ability than steam activation method in adsorption of Hg on activated carbon. Activated carbon adsorbed iodide ion is very effective on adsorption of Hg.

  • PDF

Effect of Carbonization Temperature on Carbon Dioxide Adsorption Behaviors of mesoporous carbon (중기공 탄소의 탄화온도에 따른 이산화탄소 흡착 거동)

  • Jang, Dong-Il;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.221.1-221.1
    • /
    • 2011
  • In this study, we prepared the nitrogen-containing carbon spheres with mesopore processed by a facile polymerization-induced colloid aggregation method including carbonization in order to investigate the characterization and the effect on their carbon dioxide adsorption behaviors. The carbonization temperature was varied in the range of $600^{\circ}C$ to $900^{\circ}C$. The nitrogen contents of the mesoporous carbon sphere were characterized using XPS. The carbon dioxide adsorption capacities of the prepared mesoporous carbon sphere were determined by the amounts of carbon dioxide adsorptions at 298 K and 1.0 atm. The results showed that the prepared mesoporous carbons were highly effective for the carbon dioxide adsorption due to the increasing the affinity of the basic functionalities of adsorbent surface to acidic carbon dioxide. Maximum adsorption capacities of carbon dioxide at $25^{\circ}C$ were achieved up to 106 mg/g.

  • PDF

Adsorption of p-Nitrophenol by Surface Modified Carbons from Aqueous Solution

  • Goyal, Meenakshi
    • Carbon letters
    • /
    • v.5 no.2
    • /
    • pp.55-61
    • /
    • 2004
  • Adsorption isotherms of p-nitrophenol from its aqueous solutions on two samples of activated carbon fibres and two samples of granulated activated carbons have been determined in the concentration range 40~800 mg/L (ppm). The surface of these carbons was modified by oxidation with nitric acid and oxygen gas, and by degassing the carbon surface under vacuum at temperatures of $400^{\circ}C$, $650^{\circ}C$ and $950^{\circ}C$. The oxidation of carbon enhances the amount of carbon-oxygen surface groups, while degassing decreases the amount of these surface groups. The adsorption of p-nitrophenol does not depend upon the surface area alone but appears to be influenced by the presence of oxygen groups on the carbon surface. The adsorption decreases on oxidation while the degassing of the carbon surface enhances the adsorption. The decrease in adsorption depends upon the strength of the oxidative treatment being much larger in case of the oxidation with nitric acid, while the decrease in adsorption on degassing depends upon the temperature of degassing. The results show that while the presence of acidic surface groups which are evolved as $CO_2$ on degassing suppress the adsorption of p-nitrophenol, the presence of non acidic surface groups which are evolved as CO on degassing tend to enhance the adsorption. Suitable mechanisms compatible with the results have been presented.

  • PDF

A Study on the Environmental Effects of Improvement of Activated Carbon Adsorption Tower for the Application of Activated Carbon Co-Regenerated System in Sihwa/Banwal Industrial Complex (시화반월산업단지 활성탄 공동재생시스템 적용을 위한 활성탄 흡착탑 개선에 따른 환경적 효과분석)

  • Choi, Ye Jin;Rhee, Young Woo;Chung, Gu Hoi;Kim, Duk Hyun;Park, Seung Joon
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.160-167
    • /
    • 2021
  • This study investigated the environmental effects of improving the general-type activated carbon adsorption tower used at the Sihwa/Banwol Industrial Complex with use of a cartridge-type activated carbon adsorption tower for the application of an activated carbon co-regenerated system. Four general-type activated carbon adsorption towers and two cartridge-type activated carbon adsorption towers were selected to analyze the properties of activated carbon and to compare the efficiency of reducing environmental pollutants. The results showed that the activated carbon used in the cartridge-type activated carbon adsorption towers was high quality activated carbon with an iodine adsorption force of more than 800 mg/g and that a good adsorption performance was maintained within the replacement cycle. From an analysis of the environmental pollutant reduction efficiency, it was confirmed that the cartridge-type activated carbon adsorption tower functioned properly as a prevention facility for handling emissions pollutants with a treatment efficiency of total hydrocarbons (THC), toluene, and methylethylketone (MEK) components of 71%, 77%, and 80%, respectively. The general activated carbon adsorption tower, which was confirmed to use low-performance activated carbon, had a very low treatment efficiency and did not function properly as a prevention facility for dealing with emission pollutants. It is believed that it is possible to reduce pollutants during operations by changing from the general-type activated carbon adsorption tower to a cartridge-type activated carbon adsorption tower.

Adsorption of Trichloroethylene in Water by Coconut Carbon and Coconut Activated Carbon (야자껍질 탄화탄과 야자껍질 활성탄에 의한 수중 Trichloroethylene의 흡착에 관한 연구)

  • 김영규;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.4
    • /
    • pp.25-32
    • /
    • 1993
  • Granular activated carbon is commonly used in fixed-bed adsorbers to remove organic chemicals. In this experiment organic chemical solutions were prepared by adding the reagent grade organic chemical to distilled water. Isotherm adsorption tests of volatile organic chemicals were conducted using bottle-point technique and column test. Organic chemicals after passing through the column were extracted with hexane and analyzed with gas chromatography (Hewlett-Packard 5890) to check the adsorption capacity and breakthrough curve. The result were as follows: 1. The BET surface area of coconut activated carbon was 658~1,010 m$^2$/g where as coconut shell carbon was 6.6 m$^2$/g. Coconut activated carbon increased the BET surface area and adsorption capacity in bottle-point isotherm. 2. The adsorption capacity of coconut activated carbon for trichloroethylene (TCE) was reduced in the presence of humic substance. 3. A decrease in particle size of activated carbon resulted in higher adsorption capacity and lower intraparticle diffusion coefficient. It is reflected not only as a decrease in Freudlich adsorption capacity value (K) but also as an increase in Freudlich exponenent value (1/n).

  • PDF

A Study on the Adsorption Characteristics of Phenol in the presence of Humic Acid Using Activated Carbon Fiber (섬유상활성탄소를 이용한 Humic Acid 공존시 페놀의 흡착특성에 관한 연구)

  • Tak, Seong-Jae;Seo, Seong-Wen;Kim, Seong-Sun;Kim, Jin-Man
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.1
    • /
    • pp.54-61
    • /
    • 2000
  • Recently, our circumstances are threatened by an accident that leakage of under ground storage tank and illegal dumping of synthetic organic compounds at chemical plants and many treatment methods, Activated carbon adsorption, Ozonization, Membrane filtration and Photocatalystic oxidation, are developed to remove such a synthetic organic compounds. And it has reported that Activated carbon adsorption have a great removal efficiency to nondegradable matters and organic compounds which have a high molecular weight. Comparing with other adsorbents, Activated carbon adsorption have a worse efficiency when ad desorption speed is low. Thus improved type of adsorbents was invented and one of those is Activated Carbon Filter. The purpose of this study was getting information about adsorption characteristic phenol which can be applied Activated Carbon Fiber and Granular Activated Carbon. In detail, With comparing removal characteristics of phenol in the presence Humic Acid using Activated Carbon Fiber(ACF) and Granular Activated. Carbon(GAC), it is to certify an effective application of Activated Carbon Fiber. At the range of this study, Batch test, Isotherm adsorption test and Factorial analysis, following conclusion were obtained from the results of this study. Batch test was carried to know time of adsorption equilibrium. In this study about time of adsorption equilibrium by ACF was faster than GAC's, for developed micropore of ACF. From the result of phenol adsorption test, High removal rate of adsorption is shown at pH 5. The result of lsotherm adsorption test, it has represented that the Freundlich's isotherm is most suitable one in others, that a ACF's adsorption capacity is more excellent than GAC's. Adsorption of phenol exiting humic acid is decreased getting raised humic acid concentration. Since ACF's micropore is developed at this time, an effect of high molecular humic acid is lower. Factorial analysis was carried to know about Main effect which was injection dosage of adsorbent in the range of this study.

  • PDF

A Kinetic Study on the Phosphorus Adsorption by Physical Properties of Activated Carbon (활성탄 물성에 따른 인 흡착의 동력학적 연구)

  • Seo, Jeongbeom;Kang, Joonwon
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.491-496
    • /
    • 2010
  • This study aimed to obtain equilibrium concentration on adsorption removal of phosphorus by activated carbon, to express the adsorption characteristics following Freundlich isotherm and also, based on the value obtained, to investigate the relationship between physical properties of activated carbon and dynamics of phosphorus removal by obtaining rate constant and effective pore diffusivity. The results summarized from this study are as follows. Phosphorus adsorption equilibrium reaching time of powdered activated carbon was reduced as the dosage of activated carbon increases, while granular activated carbon despite increased dosage did not have influence on adsorption equilibrium reaching times of phosphorus as well, taking more than 10 hours. It was also noted that powdered activated carbon showed better adsorption ability than granular activated carbon. The value of constant (f) of Freundlich isotherm of powered activated carbon on phosphorus was 4.26 which is bigger than those of granular activated carbon. The adsorption rate constant on phosphorus of powered activated carbon with low effective diameter and iodine number was highest as $8.888hr^{-1}$ and the effective pore diffusivity ($D_e$) was lowest as $2.45{\times}10^{-5}cm^2/hr$, and the value of phosphorus adsorption rate constant of granular activated carbon was $0.174{\sim}0.372hr^{-1}$, It was revealed that, with the same amount of dosage, the adsorptive power of activated carbon with lower effective diameter was better and its rate constant was also high.

Thermostable Adsorption Filter Immobilized with Super Activated Carbons by Quinoline Soluble Isotropic Pitch Binder (I-a Novel Adsorption Filter)

  • Park, Yeong-Tae;Im, Chul-Gyou;Kim, Yeong-Tae;Rhee, Bo-Sung
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.198-201
    • /
    • 2009
  • Among other filters such as light filter, wave filter, air filter, ultra filter and filter paper, a novel adsorption filter from thermostable polyester nonwoven fabrics immobilized with functional super activated carbon by means of quinoline soluble, activateable isotropic pitch binder were developed in this study. The activated carbon precursor is available in the market branded as coconut shell based activated carbon(CCS-AC) produced by Dongyang Carbon Co. Ltd. BET-surface area of this precursor was $1,355\;m^2/g$, after KOH-activation it increased over $2,970\;m^2/g$ and was named as super activated carbon. In the preliminary research, this precursor was impregnated with $PdCl_2$(0.188 wt%) $KMnO_4$(3 wt%) and redox-agent(CuCl2, 0.577 wt%) in order to promote TOF up to 100/h and Selectivity up 99% and patented as a functional AC for the ethylene adsorption. The enhancement of the isotropic pitch binder to the AC-immobilized adsorption filter was BET-surface area upgraded by $266\;m^2/g$ and promoted the Iodine- and MB-adsorption by 1.4 times, respectively and also micro pore wide ranges < $5{\AA}{\sim}30\;{\AA}$ >.

A study on elemental mercury adsorption behaviors of nanoporous carbons with carbon dioxide activation

  • Bae, Kyong-Min;Park, Soo-Jin
    • Carbon letters
    • /
    • v.15 no.4
    • /
    • pp.295-298
    • /
    • 2014
  • In this work, nanoporous carbons (NPCs) were prepared by the self-assembly of polymeric carbon precursors and block copolymer template in the presence of tetraethyl orthosilicate and colloidal silica. The NPCs' pore structures and total pore volumes were analyzed by reference to $N_2$/77 K adsorption isotherms. The porosity and elemental mercury adsorption of NPCs were increased by activation with carbon dioxide. It could be resulted that elemental mercury adsorption ability of NPCs depended on their specific surface area and micropore fraction.