• Title/Summary/Keyword: Carbon/carbon-based materials

Search Result 1,325, Processing Time 0.03 seconds

The study of geopolymer utilization of reclaimed ash by using magnetic separation method (자력선별법을 이용한 화력 발전소 매립회의 지오폴리머 원료화 연구)

  • Kim, Kangduk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.5
    • /
    • pp.249-255
    • /
    • 2017
  • Using a magnetic separation process, pond ash generated in thermoelectric power plants was separated into magnetic materials and nonmagnetic materials in order to make it into a raw material of geopolymers and unburned carbon; screening characteristics according to the particle sizes and magnet strength levels of the pond ash were observed. Based on the results of magnetic separation into fine particle (0.15~0.84 mm) and rough particle (0.84~2.4 mm) pond ash using 3000 G magnets, the weight fraction and ignition loss of nonmagnetic materials were found to be higher than those of magnetic materials, regardless of the particle size. In the case of fine particle pond ash, when the magnet strength was increased from 3000 G to 10000 G, even those materials that were weakly magnetic were separated into magnetic materials, leading to drastic increases in the weight fraction of magnetic materials, such that the ignition loss accounted for 66.9 % (22.8 wt%) of the entire ignition loss of 32.6 wt%, despite of the low ignition loss. Based on the results of measurement of the compressive strength levels of geopolymers made of magnetic-separated rough particle pond ash, the compressive strength of geopolymers made of magnetic materials containing small amounts of unburned carbon was found to be 20 MPa.

Effect of Pore Structure and Heteroelements on Carbon Dioxide Adsorption of Activated Carbon Prepared from Pig Bone (돼지 뼈로부터 제조된 활성탄소의 기공구조 및 이종원소가 이산화탄소 흡착에 미치는 영향)

  • Seo Gyeong Jeong;Chaehun Lim;Seongjae Myeong;Chung Gi Min;Naeun Ha;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.576-583
    • /
    • 2023
  • This study investigated the possibility of new adsorbent materials made from pig bone-based biomass. To this end, the properties of pig bone-based activated carbon (PAC) prepared from animal biomass were investigated, and its carbon dioxide adsorption performance was examined. KOH was used as the activation agent, and the specific surface area increased with increasing activation temperature, and the adsorption efficiency of carbon dioxide also increased. The sample activated at 800 ℃ exhibited the largest specific surface area of 1208.7 m2/g and the highest CO2 adsorption efficiency of 3.33 mmol/g at 273 K, 1 bar. However, the specific surface area and the CO2 adsorption efficiency decreased at activation temperatures above 900 ℃ due to crystallinity changes and overactivation. On the other hand, when the selectivity was calculated using the ideal adsorption solution theory, PAC-900 samples at 273 K and below 0.8 bar showed the best selectivity. These results suggest that the high selectivity of carbon dioxide/nitrogen adsorption at 273 K is due to the carbon dioxide adsorption capacity of hydroxyapatite formed by the decomposition of carbonate when pig bone is activated at 900 ℃ and its crystallinity.

Study of the Influence of Oxidation Treatment on the Pitch Based Carbon Fiber Properties (핏치계 탄소섬유 제조에 있어서 산화공정이 물성에 미치는 영향)

  • Kim, Hong;Seong, Ha-Jin;Gwon, Yeong-Bae
    • 한국기계연구소 소보
    • /
    • s.15
    • /
    • pp.57-66
    • /
    • 1985
  • Fibers with a high degree of axial preferred orientation can be obtained from mesophase pitch. Prior to cabonization, the pitch fibers must be rendered in fusible so that their orientation is preserved. The stabilization of the pitch fibers was heated at temperature between $250^{circ}C$ and $300^{circ}C$ and a treatment time 5 to 80minutes. Oxidized fibers heated $1800^{circ}C$without stretching. Pitch based carbon fiber have a young's modulus as high as 304GN/$m^2$. The structure of the pitch cased carbon fiber is determining factor for the mechanical properties of the produced fibers. The structure depending on the pitch precursor as well as on the oxidation time.

  • PDF

Performance Evaluation of Cement Composites Mixed with Multi-Wall Carbon Nanotube and Nanosilica (다중벽 탄소나노튜브와 나노실리카를 혼입한 시멘트 복합체의 성능 평가)

  • Kim, Seong Woo;Son, Jeong Jin;Kim, Ji-Hyun;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.185-186
    • /
    • 2023
  • Recently, a lot of nano-scale material technology development and research have been conducted in construction fields to improve the compressive strength and durability of cement-based Composites. There are some studies that have confirmed the properties and application effects of cement-based complex using each nanomaterial, but development and research using both materials are relatively limited. This study sought to confirm the effect of multi-wall carbon nanotubes (MWCNT) and nanosilica, which are representative construction nanomaterials, on the compressive strength, voids, and microstructure formation of cement. The purpose was to produce a cement composite by changing the mixing rate of the two nanomaterials, and to find the optimal mixing amount considering its mechanical and rheological properties.

  • PDF

A study on the processing of phenolic composite reinforced with hybrid of PAN based/Rayon based carbon fabrics using FBG sensor system (FBG 센서를 이용한 PAN계/Rayon계 탄소 직물 하이브리드 복합재료의 성형 공정 연구)

  • Kim Jae Hong;Park Jong Kyu;Kang Tae Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.159-162
    • /
    • 2004
  • The processing of phenolic composite reinforced with hybrid of PAN based/Rayon based carbon fabrics using FBG sensor and thermocouple was studied. Once the composite is cured, the reflection spectrum from the FBG sensor shifted the center wavelength with an increase in the temperature. Also, the change in the form of the reflection spectrum obtained during the cooling process of the cure cycle was caused by the thermal shrinkage. During the curing process, uniform distribution of the temperature profile was observed throughout the sample.

  • PDF

Carbon Dioxide-reducible Biodegradable Polymers (이산화탄소 저감형 생분해성 고분자)

  • Lee, Won-Ki
    • Clean Technology
    • /
    • v.17 no.3
    • /
    • pp.191-200
    • /
    • 2011
  • Natural polymers, biopolymers, and synthetic polymers based on renewable resources are the basis for the 21th portfolio of sustainable and eco-friendly plastics but high-volume consumable plastics continue to be dominated by nondegradable petroleum-based materials. Three factors have recently made biodegradable polymers economically attractive: (i) rising costs of petroleum production resulting from the depletion of the most easily accessible reserves, (ii) environmental and economic concerns associated with waste plastics, and (iii) emissions of carbon dioxide from preparation of petroleum-based materials. These pressures have driven commercial applications based on biodegradable polymers which are related to reduction of carbon dioxide in processing, such poly(hydroxy alkanoate) and poly (lactide). Since initial degradation of these polymers leads to catastrophic mechanical failure, it is necessary to control the rate of initial degradation for commercial applications. In this article, we have a critic review on the recent progress of polymer modification for the control of degradation.

The Synthesis and Photocatalytic activity of Carbon Nanotube-mixed TiO2 Nanotubes

  • Park, Chun Woong;Kim, Young Do;Sekino, Tohru;Kim, Se Hoon
    • Journal of Powder Materials
    • /
    • v.24 no.4
    • /
    • pp.279-284
    • /
    • 2017
  • The formation mechanism and photocatalytic properties of a multiwalled carbon nanotube (MWCNT)/$TiO_2$-based nanotube (TNTs) composite are investigated. The CNT/TNT composite is synthesized via a solution chemical route. It is confirmed that this 1-D nanotube composite has a core-shell nanotubular structure, where the TNT surrounds the CNT core. The photocatalytic activity investigated based on the methylene blue degradation test is superior to that of with pure TNT. The CNTs play two important roles in enhancing the photocatalytic activity. One is to act as a template to form the core-shell structure while titanate nanosheets are converted into nanotubes. The other is to act as an electron reservoir that facilitates charge separation and electron transfer from the TNT, thus decreasing the electron-hole recombination efficiency.

Determination of the elastic properties in CFRP composites: comparison of different approaches based on tensile tests and ultrasonic characterization

  • Munoz, Victor;Perrin, Marianne;Pastor, Marie-Laetitia;Welemane, Helene;Cantarel, Arthur;Karama, Moussa
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.249-261
    • /
    • 2015
  • The mechanical characterization of composite materials is nowadays a major interest due to their increasing use in the aeronautic industry. The design of most of these materials is based on their stiffness, which is mainly obtained by means of tensile tests with strain gauge measurement. For thin laminated composites, this classical method requires adequate samples with specific orientation and does not provide all the independent elastic constants. Regarding ultrasonic characterization, especially immersion technique, only one specimen is needed and the entire determination of the stiffness tensor is possible. This paper presents a study of different methods to determine the mechanical properties of transversely isotropic carbon fibre composite materials (gauge and correlation strain measurement during tensile tests, ultrasonic immersion technique). Results are compared to ISO standards and manufacturer data to evaluate the accuracy of these techniques.

A Study on the Heat Performance of Single Layered Bubble Sheet Using Phothothermal Materials (광발열 소재를 활용한 1중 버블시트의 발열성능 검토)

  • Lee, Hyeon-Jik;Hu, Yun-Yao;Lee, Seung-Min;Han, Jun-Hui;Kin, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.223-224
    • /
    • 2023
  • This study compared the curing temperature of the bubble sheet and the photothermal insulation sheet incorporating carbon-based photothermal materials to reduce concrete curing time as a part of shortening construction period. As a result of the experiment, bubble sheet with photothermal material B is judged to be effective in shortening the curing time under hot environment.

  • PDF

CO2 Capture & Separation in Microporous Materials: A Comparison Between Porous Carbon and Flexible MOFs (다공성 물질을 이용한 CO2 포집 및 분리: 다공성 탄소와 유연한 MOF 비교 연구)

  • Jung, Minji;Park, Seoha;Oh, Hyunchul;Park, Kwi-il
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.417-422
    • /
    • 2018
  • The stereotype of flexible MOFs(Amino-MIL-53) and carbonized porous carbon prepared from renewable resources is successfully synthesized for $CO_2$ reduction application. The textural properties of these microporous materials are investigated, and their $CO_2$ storage capacity and separation performance are evaluated. Owing to the combined effects of $CO_2-Amino$ interaction and its flexibility, a $CO_2$ uptake of $2.5mmol\;g^{-1}$ is observed in Amino-MIL-53 at 20 bar 298 K. In contrast, $CH_4$ uptake in Amino-MIL-53 is very low up to 20 bar, implying potential sorbent for $CO_2/CH_4$ separation. Carbonized samples contain a small quantity of metal residues(K, Ca, Mg, S), resulting in naturally doped porous carbon. Due to the trace metal, even higher $CO_2$ uptake of $4.7mmol\;g^{-1}$ is also observed at 20 bar 298 K. Furthermore, the $CH_4$ storage capacity is $2.9mmol\;g^{-1}$ at 298 K and 20 bar. To evaluate the $CO_2$ separation performance, the selectivity based on ideal adsorption solution theory for $CO_2/CH_4$ binary mixtures on the presented porous materials is investigated.