• Title/Summary/Keyword: Carbon/carbon-based materials

Search Result 1,339, Processing Time 0.034 seconds

Effect of Mechanical and Toughening Characteristics of Epoxy/Carbon Fiber Composite by Polyamide 6 Particles, CTBN Addition Technology (Polyamide 6 입자 및 CTBN 첨가 기술에 따른 에폭시/탄소섬유 복합재의 강인화 효과 및 기계적 특성)

  • Sung-Youl Bae;Kyo-Moon Lee;Sanjay Kumar;Ji-Hun Seok;Jae-Wan Choi;Woo-Hyuk Son;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.355-360
    • /
    • 2023
  • Epoxy-based carbon fibers reinforced plastic (CFRP) exhibit limitations in their suitability for industrial applications due to high brittleness characteristics. To address this challenge, extensive investigations are underway to enhance their toughness properties. This research focuses on evaluating the toughening mechanisms achieved by Polyamide 6 particles(p-PA6) and Carboxyl-Terminated Butadiene-Acrylonitrile (CTBN) elastomer, with a specific emphasis on utilizing minimal additive quantities. The study explores the impact of varying concentrations of p-PA6 and CTBN additives, namely 0.5, 1, 2.5, and 5 phr, through comprehensive Mode I fracture toughness and tensile strength analyses. The inclusion of p-PA6 demonstrated improvements in toughness when introduced at a relatively low content of 1phr. This improvement manifested as a sustained fracture behavior, contributing to enhanced toughness, while simultaneously maintaining the material's tensile strength. Furthermore, the investigation revealed that the incorporation of p-PA6 affected in particle aggregation, thus influencing the overall toughening mechanism. Incorporation of CTBN, an elastomeric modifier, exhibited a pronounced increase in fracture toughness at higher concentrations of 2.5 phr and beyond. However, this increase in toughness was accompanied by a reduction in tensile strength, resulting in fracture behavior similar to conventional CFRP exhibiting brittleness. The synergy between pPA6, CTBN and CFRP appeared to marginally enhance tensile strength under specific content conditions. As a result of this study, optimized conditions for the application of the p-PA6, CTBN toughening technology have been identified and established.

Development of Carbonization Technology and Application of Unutilized Wood Wastes(II) - Carbonization and it's properties of wood-based materials - (미이용 목질폐잔재의 탄화 이용개발(II) - 수종의 목질재료 탄화와 탄화물의 특성 -)

  • Kong, Seog-Woo;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.57-65
    • /
    • 2000
  • Objective of research is obtain fundamental data of carbonized wood wastes for soil condition, de-ordorization, absorption of water, carrier for microbial activity, and purifying agent for water quality of river. The carbonization technique and the properties of carbonized wood wastes(wood-based materials) were analyzed. Proximate analysis showed the wood-based materials contains 0.37~2.27% ash, 70~74% volatile matter, and 17~20% fixed carbon. As carbonization temperature was increased, the charcoal yield was decreased. However, no difference in charcoal yield was found due to time increase. The specific gravity after the carbonization decreased about 30~40% comparing to green wood. The charcoal had 1.08~4.18% ash, 5.88~13.79% volatile matter, and 80.15~90.94% fixed carbon. The pH of plywood and particleboard(pH 9 at $400^{\circ}C$, pH 10 at $600^{\circ}C$ and $800^{\circ}C$) made charcoals was higher than that of fiberboard. The water-retention capacity was not affected by the carbonization temperature and time. The water-retention capacity within 24h was about 2~2.5 times of sample weight, and the Equilibrium moisture content(EMC) became 2~10% after 24h. EMC of charcoal from the thinned trees were 9.40~11.82%($20^{\circ}C$, RH 90%), 6.87~7.61%($20^{\circ}C$, RH 65%), and 1.69~2.81%($20^{\circ}C$, RH 25%). EMC of charcoal from the wood-based materials under $20^{\circ}C$, relative humidity(RH) 90% was similar to EMC of charcoal from the thinned trees(9~11 %). However, under $20^{\circ}C$, RH 25.65%, EMC of charcoal from the wood-based materials were higher(2~3%) than EMC of charcoal from the thinned trees. Every charcoal from the wood-based materials fulfilled the criteria in JWWA K 113-1947.

  • PDF

Reduced Graphene Oxide Field-effect Transistor as a Transducer for Ion Sensing Application

  • Nguyen, T.N.T.;Tien, Nguyen Thanh;Trung, Tran Quang;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.562-562
    • /
    • 2012
  • Recently, graphene and graphene-based materials such as graphene oxide (GO) or reduced graphene oxide (R-GO) draws a great attention for electronic devices due to their structures of one atomic layer of carbon hexagon that have excellent mechanical, electrical, thermal, optical properties and very high specific surface area that can be high potential for chemical functionalization. R-GO is a promising candidate because it can be prepared with low-cost from solution process by chemical oxidation and exfoliation using strong acids and oxidants to produce graphene oxide (GO) and its subsequent reduction. R-GO has been used as semiconductor or conductor materials as well as sensing layer for bio-molecules or ions. In this work, reduced graphene oxide field-effect transistor (R-GO FET) has been fabricated with ITO extended gate structure that has sensing area on ITO extended gate part. R-GO FET device was encapsulated by tetratetracontane (TTC) layer using thermal evaporation. A thermal annealing process was carried out at $140^{\circ}C$ for 4 hours in the same thermal vacuum chamber to remove defects in R-GO film before deposition of TTC at $50^{\circ}C$ with thickness of 200 nm. As a result of this process, R-GO FET device has a very high stability and durability for months to serve as a transducer for sensing applications.

  • PDF

Influence of Discharge Voltage-Current Characteristics on CO2 Reforming of Methane using an Elongated Arc Reactor (신장 아크 반응기를 이용한 메탄 CO2 개질반응에서 방전 전압-전류특성의 영향)

  • Kim, Kwan-Tae;Hwang, Na-Kyung;Lee, Jae-Ok;Lee, Dae-Hoon;Hur, Min;Song, Young-Hoon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.683-689
    • /
    • 2010
  • Reforming of methane with carbon dioxide has been carried out using a bipolar pulse driven elongated arc reactor operating at atmospheric pressure and non-equilibrium regime. This plasma reactor is driven by two kinds of power supply, characterized by different voltage-current characteristics under the same operating power and frequency. Varying the $CO_2/CH_4$ ratio and the discharge power, the conversion rate, yield, and reforming efficiency for the two power supplies are investigated in conjunction with the static and dynamic behaviors of voltage and current. It is found that not only the values of voltage and current but also their shapes give an influence on the reforming performances. Finally, a better electrical operation regime for the efficient plasma reforming is proposed based on the relationship between the voltage-current characteristics and the reforming performance.

Reduced graphene oxide field-effect transistor for biomolecule detection and study of sensing mechanism

  • Kim, D.J.;Sohn, I.Y.;Kim, D.I.;Yoon, O.J.;Yang, C.W.;Lee, N.E.;Park, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.431-431
    • /
    • 2011
  • Graphene, two dimensional sheet of sp2-hybridized carbon, has attracted an enormous amount of interest due to excellent electrical, chemical and mechanical properties for the application of transparent conducting films, clean energy devices, field-effect transistors, optoelectronic devices and chemical sensors. Especially, graphene is promising candidate to detect the gas molecules and biomolecules due to the large specific surface area and signal-to-noise ratios. Despite of importance to the disease diagnosis, there are a few reports to demonstrate the graphene- and rGO-FET for biological sensors and the sensing mechanism are not fully understood. Here we describe scalable and facile fabrication of rGO-FET with the capability of label-free, ultrasensitive electrical detection of a cancer biomarker, prostate specific antigen/${\alpha}1$-antichymotrypsin (PSA-ACT) complex, in which the ultrathin rGO sensing channel was simply formed by a uniform self-assembly of two-dimensional rGO nanosheets on aminated pattern generated by inkjet printing. Sensing characteristics of rGO-FET immunosensor showed the highly precise, reliable, and linear shift in the Dirac point with the analyte concentration of PSA-ACT complex and extremely low detection limit as low as 1 fg/ml. We further analyzed the charge doping mechanism, which is the change in the charge carrier in the rGO channel varying by the concentration of biomolecules. Amenability of solution-based scalable fabrication and extremely high performance may enable rGO-FET device as a versatile multiplexed diagnostic biosensor for disease biomarkers.

  • PDF

The Densification Properties of Distaloy AE-TiC Cermet by Spark Plasma Sintering (방전 플라즈마 소결에 의한 Distaloy AE-TiC 써멧의 치밀화 특성)

  • Cho, Ho-Jung;Ahn, In-Shup;Lee, Young-Hee;Park, Dong-Kyu
    • Journal of Powder Materials
    • /
    • v.14 no.4
    • /
    • pp.230-237
    • /
    • 2007
  • The fabrication of Fe alloy-40 wt.%TiC composite materials using spark plasma sintering process after ball-milling was studied. Raw powders to fabricate Fe alloy-TiC composite were Fe alloy, $TiH_{2}$ and activated carbon. Fe alloy powder was Distaloy AE (4%Ni-1%Cu-0.5%Mo-0.01%C-bal.%Fe) made by Hoeganes company with better toughness and lower melting point. These powders were ball-milled in horizontal attrition ball mill at a ball-to-powder weight ratio of 30 : 1. After that, these mixture powders were sintered by using spark plasma sintering apparatus for 5 min at $1200-1275^{\circ}C$ in vacuum atmosphere under $10^{-3}$ torr. DistaloyAE-40 wt.%TiC composite was directly synthesized by dehydrogenation and carburization reaction during sintering process. The phase transformation of as-milled powders and sintered materials was confirmed using X-ray diffraction (XRD) and transmission electron microscope (TEM). The density and harness materials was measured in order to confirm the densification behavior. In case of DistaloyAE-40 wt.%TiC composite retained for 5 min at $1275^{\circ}C$, it has the relative density of about 96% through the influence of rapid densification and fine TiC particle reinforced Fe-based composites materials.

Effect of Surface Modification of the Porous Stainless Steel Support on Hydrogen Perm-selectivity of the Pd-Ag Alloy Hydrogen Separation Membranes (다공성 스테인리스 강 지지체의 표면개질에 따른 팔라듐-은 합금 수소 분리막의 수소 투과 선택도의 변화)

  • Kim, Nak-Cheon;Kim, Se-Hong;Lee, Jin-Beum;Kim, Hyun-Hee;Yang, Ji-Hye;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.286-300
    • /
    • 2016
  • Pd-Ag alloy membranes have attracted a great deal of attention for their use in hydrogen purification and separation due to their high theoretical permeability, infinite selectivity and chemical compatibility with hydro-carbon containing gas streams. For commercial application, Pd-based membranes for hydrogen purification and separation need not only a high perm-selectivity but also a stable long-term durability. However, it has been difficult to fabricate thin, dense Pd-Ag alloy membranes on a porous stainless steel metal support with surface pores free and a stable diffusion barrier for preventing metallic diffusion from the porous stainless steel support. In this study, thin Pd-Ag alloy membranes were prepared by advanced Pd/Ag/Pd/Ag/Pd multi-layer sputter deposition on the modified porous stainless steel support using rough polishing/$ZrO_2$ powder filling and micro-polishing surface treatment, and following Ag up-filling heat treatment. Because the modified Pd-Ag alloy membranes using rough polishing/$ZrO_2$ powder filling method demonstrate high hydrogen permeability as well as diffusion barrier efficiency, it leads to the performance improvement in hydrogen perm-selectivity. Our membranes, therefore, are expected to be applicable to industrial fields for hydrogen purification and separation owing to enhanced functionality, durability and metal support/Pd alloy film integration.

Establishment of Application Level for the Proper Use of Organic Materials as the Carbonaceous Amendments in the Greenhouse Soil (시설재배지 유기물자원 적정 시용기준 설정)

  • Kang, Bo-Goo;Lee, Sang-Young;Lim, Sang-Cheol;Kim, Young-Sang;Hong, Soon-Dal;Chung, Keun-Yook;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.248-255
    • /
    • 2011
  • For the environmental friendly soil management on the cultivation of crops in the greenhouse, organic materials, such as the by product-fertilizer derived from livestock manure, rice straw, mushroom media, rice hulls, wood sawdust, and cocopeat, were used as carbon sources adjusting the ratio of carbon to nitrogen to 10, 20, and 30 based on the inorganic soil N. In each C/N ratio of greenhouse soil, watermelon was cultivated in the greenhouse as crop for experiment for the spring and summer of the year and the experimental results were summarized as follows. The concentration of T-C in the organic materials applied were between $289{\sim}429g\;kg^{-1}$, In the C/N ratio of 10, using watermelon as the crop cultivated during the second half of the year in the greenhouse soil, the $NO_3$-N and EC were reduced by 21 to 37%, and 26 to 33%, respectively, except the by product-fertilizer from livestock manure, compared to the soil $NO_3$-N and EC used in the experiment. After the watermelon was cultivated in soils that C/N ratios were controlled as 10, 20, and 30 with wood sawdust adding as carbon sources in the three soils with the different EC values, EC values of the soils were reduced by 33, 42, and 39%, respectively, compared to the soil EC used in the experiment. The weight of watermelon was 10.1-13.4 kg per one unit, and, of the three soils with different EC values. In the soils with three different EC values controlled at C/N ratio of 20, the weight of watermelon was good. The degree of sugar of watermelon were 11.8 to 12.3 Brix, which means that the difference between the treatments was not significant. In conclusion, the C/N ratio of 20 controlled by the proper supply of organic materials according to the representative EC values shown in the greenhouse soils was optimal condition enough to maintain the soil management for the organic culture with the proper nutrient cycling.

Removal Characteristics of Sulfonamide Antibiotic Compounds in Biological Activated Carbon Process (생물활성탄 공정에서의 Sulfonamide계 항생물질 제거특성)

  • Son, Hee-Jong;Jung, Jong-Moon;Roh, Jae-Soon;Yu, Pyung-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.96-101
    • /
    • 2009
  • In this study, the effects of three different biological activated carbon (BAC) materials (each coal, coconut and wood based activated carbons), empty bed contact time (EBCT) and water temperature on the removal of sulfonamide 5 species in BAC filters were investigated. Experiments were conducted at three water temperatures (5, 15 and $25^{\circ}C$) and four EBCTs (5, 10, 15 and 20 min). The results indicated that coal based BAC retained more attached bacterial biomass on the surface of the activated carbon than the other BACs, increasing EBCT or increasing water temperature increased the sulfonamide 5 species removal in BAC columns. In the coal-based BAC columns, sulfachloropyridazine (SCP), sulfamethazine (SMT) and sulfathiazole (STZ) removal efficiencies were 30~80% and sulfadimethoxine (SDM), sulfamethoxazole (SMX) removal efficiencies were 18~70% for 5~20 min EBCT at $25^{\circ}C$. The kinetic analysis suggested a first-order reaction model for sulfonamide 5 species removal at various water temperatures (5~$25^{\circ}C$). The pseudo-first-order reaction rate constants and half-lives were also calculated for sulfonamide 5 species removal at 5~$25^{\circ}C$. The reaction rate and half-lives of sulfonamide 5 species ranging from 0.0094~0.0718 $min^{-1}$ and 9.7 to 73.7 min various water temperaturs and EBCTs in this study could be used to assist water utilities in designing and operating BAC filters for sulfonamide antibiotic compounds removal.

Effectiveness study of a cement mortar coating based on dune sand on the carbonation of concrete

  • Korichi, Youssef;Merah, Ahmed;Khenfer, Med Mouldi;Krobba, Benharzallah
    • Advances in concrete construction
    • /
    • v.13 no.4
    • /
    • pp.315-325
    • /
    • 2022
  • Reinforced concrete structures are exposed throughout their lifetime to the phenomenon of carbonation, which considerably influences their durability by causing corrosion of the reinforcements. The fight against this phenomenon is usually ensured by anti-carbonation coatings which have the possibility of limiting the permeability to carbon dioxide or with coatings which absorb the CO2 present in the air. A coating with good crack-bridging (sealing) capacity will prevent water from entering through existing cracks in concrete. Despite the beneficial effect of these coatings, their durability decreases considerably over time with temperature and humidity. In order to use coatings made from local materials, not presenting any danger, available in abundance in our country, very economical and easy to operate is the main objective of this work. This paper aim is to contribute to the formulation of a corrected dune sand-based mortar as an anti-carbonation coating for concrete. The results obtained show that the cement mortar based on dune sand formulated has a very satisfactory compressive strength, a very low water porosity compared to ordinary cement mortar and that this mortar allows an improvement in the protection of the concrete against the carbonation of 60% compared to ordinary cement mortar based on alluvial sand. Moreover, the formulated cement mortars based on dune sand have good adhesion to the concrete support, their adhesion strengths are greater than 1.5MPa recommended by the standards.