• Title/Summary/Keyword: Carbon/Silicon-Carbide

Search Result 144, Processing Time 0.026 seconds

Development of Polymer-derived Silicon Carbide Fiber with Low Oxygen Content Using a Cyclohexene Vapor Process (싸이클로헥센 증기 공정에 의한 산소량이 적은 실리콘카바이드 섬유의 개발)

  • Yoon, Byungil;Choi, Woo Chul;Kim, Myeong Ju;Kim, Jae Sung;Kim, Jung il;Kang, Hong Gu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.620-632
    • /
    • 2017
  • A chemical vapor curing method(CVC) was developed to cure polycarbosilane(PCS) fibers by using cyclohexene vapour as a non-oxygen active reactant, instead of air in oder to prepare the silicon carbide(SiC) fiber with low oxygen content. A cross-linked PCS fibers by cyclohexene vapor showed a completely different variation in IR spectra in comparison to the air-cured PCS fiber. CVC method resulted in less than 3 wt% in oxygen content. In this experiment conditions, The average tensile strength and modulus of SiC fiber obtained by CVC had 1995 MPa and 183 GPa respectively, which is higher than that of SiC fiber prepared by air-curing process.

Characterizations on the Thermal Insulation of SiC Coated Carbon-Carbon Composites (탄화규소로 코팅된 탄소-탄소 복합재료의 단열 특성)

  • Seo, Hyoung-IL;Lim, Byung-Joo;Sihn, Ihn Cheol;Bae, Soobin;Lee, Hyung-Ik;Choi, Kyoon;Lee, Kee Sung
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.101-107
    • /
    • 2020
  • This study investigates the characterization on the thermal insulation properties of silicon carbide coating on the Cf-C composites. The silicon carbide coatings by chemical vapor deposition on the C/C composites are prepared to evaluate thermal resistance. Firstly, we perform the basic insulation test by thermal shock at 1350℃ in air on the C/C composite and SiC-coated C/C composite. We also performed the burner tests on the surface of the composites at high temperatures such as 1700 and 2000℃, and the weight change after burner tests are measured. The damages on the surface of C/C composite and SiC-coated composite are observed. As a result, the SiC coating is beneficial to protect the C/C composite from high temperature even though damages such as defoliation, crack and voids are observed during burner test at 2000℃.

Synthesis of High-purity Silicon Carbide Powder using the Silicon Wafer Sludge (실리콘 기판 슬러지로부터 고순도 탄화규소 분말 합성)

  • Hanjung Kwon;Minhee Kim;Jihwan Yoon
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.60-65
    • /
    • 2022
  • This study presents the carburization process for recycling sludge, which was formed during silicon wafer machining. The sludge used in the carburization process is a mixture of silicon and silicon carbide (SiC) with iron as an impurity, which originates from the machine. Additionally, the sludge contains cutting oil, a fluid with high viscosity. Therefore, the sludge was dried before carburization to remove organic matter. The dried sludge was washed by acid cleaning to remove the iron impurity and subsequently carburized by heat treatment under vacuum to form the SiC powder. The ratio of silicon to SiC in the sludge was varied depending on the sources and thus carbon content was adjusted by the ratio. With increasing SiC content, the carbon content required for SiC formation increased. It was demonstrated that substoichiometric SiCx (x<1) was easily formed when the carbon content was insufficient. Therefore, excess carbon is required to obtain a pure SiC phase. Moreover, size reduction by high-energy milling had a beneficial effect on the suppression of SiCx, forming the pure SiC phase.

Synthesis of $\beta$-SiC Whiskers by the Carbothermal Reduction of Kaolin (카올린의 환원 열탄화법에 의한 베타 탄화규소 휘스커의 합성)

  • 오세정;류종화;조원승;최상욱
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1249-1256
    • /
    • 1998
  • ${\beta}$-Silicon carbide(${\beta}$-SiC) whiskers could be synthesized by the carbothermal reduction of kaolin at tem-peratures between 1400 and 1500$^{\circ}C$. The whiskers were grown up to about 1150 of aspect ratio by VS mechanism (showing tapering tips) and to about 45 of that by VLS mechanism (showing round droplet tips) respectively. Hydrocarbon like methane in the reaction atmosphere promoted the formation of gaseous il-icon monoxide(SiO) from silicon dioxide(SiO2) and subsequently reacted with it to form whiskers. The for-mation of ${\beta}$-SiC whiskers increased with increasing carbon content(to 30 wt%) and reaction temperatures. The max. yield of ${\beta}$-SiC whiskers was 15% at 1500$^{\circ}C$ under 20%CH4/80%H2.

  • PDF

Synthesis of Carbon Nano Silicon Composites for Secondary Battery Anode Materials Using RF Thermal Plasma (RF 열플라즈마를 이용한 이차전지 음극재용 탄소나노실리콘복합소재 합성)

  • Soon-Jik Lee;Dae-Shin Kim;Jeong-Mi Yeon;Won-Gyu Park;Myeong-Seon Shin;Seon-Yong Choi;Sung-Hoo Ju
    • Korean Journal of Materials Research
    • /
    • v.33 no.6
    • /
    • pp.257-264
    • /
    • 2023
  • To develop a high capacity lithium secondary battery, a new approach to anode material synthesis is required, capable of producing an anode that exceeds the energy density limit of a carbon-based anode. This research synthesized carbon nano silicon composites as an anode material for a secondary battery using the RF thermal plasma method, which is an ecofriendly dry synthesis method. Prior to material synthesis, a silicon raw material was mixed at 10, 20, 30, 40, and 50 wt% based on the carbon raw material in a powder form, and the temperature change inside the reaction field depending on the applied plasma power was calculated. Information about the materials in the synthesized carbon nano silicon composites were confirmed through XRD analysis, showing carbon (86.7~52.6 %), silicon (7.2~36.2 %), and silicon carbide (6.1~11.2 %). Through FE-SEM analysis, it was confirmed that the silicon bonded to carbon was distributed at sizes of 100 nm or less. The bonding shape of the silicon nano particles bonded to carbon was observed through TEM analysis. The initial electrochemical charging/discharging test for the 40 wt% silicon mixture showed excellent electrical characteristics of 1,517 mAh/g (91.9 %) and an irreversible capacity of 133 mAh/g (8.1 %).

Electronic properties of monolayer silicon carbide nanoribbons using tight-binding approach

  • Chuan, M.W.;Wong, Y.B.;Hamzah, A.;Alias, N.E.;Sultan, S. Mohamed;Lim, C.S.;Tan, M.L.P.
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.213-221
    • /
    • 2022
  • Silicon carbide (SiC) is a binary carbon-silicon compound. In its two-dimensional form, monolayer SiC is composed of a monolayer carbon and silicon atoms constructed as a honeycomb lattice. SiC has recently been receiving increasing attention from researchers owing to its intriguing electronic properties. In this present work, SiC nanoribbons (SiCNRs) are modelled and simulated to obtain accurate electronic properties, which can further guide fabrication processes, through bandgap engineering. The primary objective of this work is to obtain the electronic properties of monolayer SiCNRs by applying numerical computation methods using nearest-neighbour tight-binding models. Hamiltonian operator discretization and approximation of plane wave are assumed for the models and simulation by applying the basis function. The computed electronic properties include the band structures and density of states of monolayer SiCNRs of varying width. Furthermore, the properties are compared with those of graphene nanoribbons. The bandgap of ASiCNR as a function of width are also benchmarked with published DFT-GW and DFT-GGA data. Our nearest neighbour tight-binding (NNTB) model predicted data closer to the calculations based on the standard DFT-GGA and underestimated the bandgap values projected from DFT-GW, which takes in account the exchange-correlation energy of many-body effects.

Characterization of Air and SO2 Gas Corrosion of Silicon Carbide Nanofibers (탄화규소 나노섬유의 고온 대기 및 SO2 가스분위기에서의 부식물성)

  • Kim, Min-Jung;Lee, Dong-Bok
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.1
    • /
    • pp.36-40
    • /
    • 2010
  • The SiO vapor that was generated from a mixture of Si and $SiO_2$ was reacted at $1350^{\circ}C$ for 2 h under vacuum with carbon nanofibers to produce SiC nanofibers having an average diameter of 100~200 nm. In order to understand the gas corrosion behavior, SiC nanofibers were exposed to air up to $1000^{\circ}C$. SiC oxidized to amorphous $SiO_2$, but its oxidation resistance was inferior unlike bulk SiC, because of high surface area of nanofibers. When SiC nanofibers were exposed to Ar-1% $SO_2$ atmosphere, SiC oxidized to amorphous $SiO_2$, without forming $SiS_2$, owing to the thermodynamic stability of $SiO_2$.

Preparation and Properties of Reaction Bonded Silicon Carbide by Slip Casting Method (탄화규소 분말의 주입성형 및 소결체의 특성)

  • 한인섭;양준환
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.8
    • /
    • pp.577-584
    • /
    • 1991
  • Among various forming techniques for ceramics, we have studied the slip casting method for the binary system of SiC and carbon. The stability of the slip of silicon carbide and carbon were investigated by measurements of zeta potential, viscosity, sedimentation height, and also studied as functions of PH and amounts of dispersants. A preform of SiC and C was prepared by slip casting and heat treatment at 400∼600$^{\circ}C$ under N2 gas. The preform was reacted with Si metal at 1550$^{\circ}C$, 10-1 mmHg to give rise a reaction bonded SiC with a density of 3.0g/㎤ and a bending strength of 580 MPa.

  • PDF

A Study on the Direct Synthesis of TaC by Cast-bonding (주조접합법에 의한 TaC 직접합성에 관한 연구)

  • Park, Heung-Il;Lee, Sung-Youl
    • Journal of Korea Foundry Society
    • /
    • v.17 no.4
    • /
    • pp.371-378
    • /
    • 1997
  • The study for direct synthesis of TaC carbide which was a reaction product of tantalum and carbon in the cast iron was performed. Cast iron which has hypo-eutectic composition was cast bonded in the metal mold with tantalum thin sheet of thickness of $100{\mu}m$. The contents of carbon and silicon of cast iron matrix was controlled to have constant carbon equivalent of 3.6. The chracteristics of microstructure and the formation mechanism of TaC carbide in the interfacial reaction layer in the cast iron/tantalum thin sheet heat treated isothermally at $950^{\circ}C$ for various time were examined. TaC carbide reaction layer was grown to the dendritic morphology in the cast iron/tantalum thin sheet interface by the isothermal heat treatment. The composition of TaC carbide was 48.5 at.% $Ti{\sim}48.6$ at.% C-2.8 at.% Fe. The hardness of reaction layer was MHV $1100{\sim}1200$. The thickness of reaction layer linearly increased with increasing the total content of carbon in the cast iron matrix and isothermal heat treating time. The growth constant for TaC reaction layer was proportional to the log[C] of the matrix. The formation mechanism of TaC reaction layer at the interface of cast iron/tantalum thin sheet was proved to be the interfacial reaction.

  • PDF

Effect of Y2O3 Additive Amount on Densification of Reaction Bonded Silicon Carbides Prepared by Si Melt Infiltration into All Carbon Preform (완전 탄소 프리폼으로부터 Si 용융 침투에 의해 제조한 반응 소결 탄화규소의 치밀화에 미치는 Y2O3 첨가량의 영향)

  • Cho, Kyeong-Sik;Jang, Min-Ho
    • Korean Journal of Materials Research
    • /
    • v.31 no.5
    • /
    • pp.301-311
    • /
    • 2021
  • The conversion of all carbon preforms to dense SiC by liquid infiltration can become a low-cost and reliable method to form SiC-Si composites of complex shape and high density. Reactive sintered silicon carbide (RBSC) is prepared by covering Si powder on top of 0.5-5.0 wt% Y2O3-added carbon preforms at 1,450 and 1,500℃ for 2 hours; samples are analyzed to determine densification. Reactive sintering from the Y2O3-free carbon preform causes Si to be pushed to one side and cracking defects occur. However, when prepared from the Y2O3-added carbon preform, an SiC-Si composite in which Si is homogeneously distributed in the SiC matrix without cracking can be produced. Using the Si + C = SiC reaction, 3C and 6H of SiC, crystalline Si, and Y2O3 phases are detected by XRD analysis without the appearance of graphite. As the content of Y2O3 in the carbon preform increases, the prepared RBSC accelerates the SiC conversion reaction, increasing the density and decreasing the pores, resulting in densification. The dense RBSC obtained by reaction sintering at 1,500 ℃ for 2 hours from a carbon preform with 2.0 wt% Y2O3 added has 0.20 % apparent porosity and 96.9 % relative density.