• 제목/요약/키워드: Carbon/Phenolic Composite Material

검색결과 20건 처리시간 0.019초

Preparation of Composite Adsorbents by Activation of Water Plant Sludge and Phenolic Resin Mixtures

  • Myung, Heung-Sik;Kim, Dong-Pyo
    • Carbon letters
    • /
    • 제1권3_4호
    • /
    • pp.154-157
    • /
    • 2001
  • Composite adsorbents were prepared by mixing water plant sludge with phenolic resin having the ratio of 1 : 1, 1 : 2, and 1 : 3 respectively, curing from $100^{\circ}C$ to $170^{\circ}C$ under $N_2$ atmosphere, and then activating with $N_2$ at $700^{\circ}C$. Thermal property, specific surface area and morphology of the composite adsorbents as well as their precursors were measured by TGA, BET and SEM respectively. Removal efficiency of the composite adsorbents to ${NH_4}^+$ and TOC was compared with those of commercial zeolite and activated carbon. The adsorbents presented very promising TOC removal efficiency of 98%, which was identical level to that of commercial activated carbon while they displayed removal efficiency, only 32%, of ${NH_4}^+$. Therefore, this composite adsorbent considered as the alternative material of commercial activated carbon, used as an expensive removal agent of organic substances and THM in water treatment plant and it also suggested a possibility of practical application in other processes.

  • PDF

Carbon/Phenolic 내열 복합재료의 기계적 특성 (Mechanical Properties of Carbon/Phenolic Ablative Composites)

  • 김평완;홍순형;김연철;예병한;정발
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.160-163
    • /
    • 1999
  • The mechanical properties and failure behaviour of carbon/phenolic composites were inverstigated by tension and compression. Carbon/phenolic composites were fabricated by infiltration of matrix into 8 harness satin woven fabric of PAN-based carbon fibers. The tensile and compressive tests were performed at 25℃ under air atmosphere and, at 400℃ and 700℃ under N₂ atmosphere. The tensile strengths of carbon/phenolic composites in with-laminar/0° warp direction were about 10 times higher than those in with-laminar/45° warp direction, which was analyzed due to a change of fracture mode from fiber pull-out by shear to tensile fracture of fibers. The fracture of carbon/phenolic composites in with-laminar/45° direction was analyzed due to delamination by buckling. Tensile and compressive strength of carbon/phenolic composites decreased to about 50% at 400℃, and to about 10% at 700℃ compared to that at room temperature. The main reason for the decrease of tensile or compressive strength with increasing temperature was analyzed due to a reduction of bond strength between fibers and matrix resulting from thermal degradation of phenolic resin.

  • PDF

페놀수지 탄화 코팅법을 이용한 섬유강화 복합재료 계면 형성에 관한 연구 (Novel Phenol Resin Carbonizing Method for Carbon Interlayer Coating between Reinforcing Fiber and Matrix in Fiber Reinforced Ceramic Composite)

  • 김세영;우상국;한인섭
    • 한국세라믹학회지
    • /
    • 제46권3호
    • /
    • pp.301-305
    • /
    • 2009
  • The novel carbon coating process for interlayer of fiber reinforced ceramic composites between fiber and matrix was performed by carbonizing phenolic resin solution that coated on fiber surface in $N_2$ atmosphere at $600^{\circ}C$ to improve the strength and fracture toughness of CMC(ceramic matrix composite). 160 nm carbon layer was coated on fiber surface with 5 vol% of phenolic resin solution. Since the process temperature ($600^{\circ}C$) is lower than chemical vapor deposition($900{\sim}1000^{\circ}C$), the strength and toughness could be preserved. Furthermore the coating thickness uniformity was improved to 8% of deviation along the stacking sequence. Therefore, prevention from fiber degradation during coating process and controlling coating thickness uniformity along the preform depth were achieved by coating with phenolic resin carbonizing method.

항공우주용 리오셀계 탄소/페놀릭 복합재료의 내열 성능 평가 (Evaluation of Heat Resistance of Lyocell-based Carbon/Phenolic for Aerospace)

  • 서상규;김연철;배지열;함희철;황태경
    • 한국항공우주학회지
    • /
    • 제49권5호
    • /
    • pp.355-363
    • /
    • 2021
  • 리오셀계 탄소/페놀릭 복합재료의 항공우주용 내열 부품 적용 가능성을 확인하기 위하여 내열성능 평가 및 열 해석을 수행하였다. 탄소/페놀릭의 열반응 평가는 내열성능평가모터(Thermal Protection Evaluation Motor, TPEM)로 수행되었다. 본 논문에서는 열 해석을 위해 유체의 경계층 해석을 고려한 경계층 적분 코드와 삭마 및 열분해를 고려한 MSC-Marc 2018 코드를 사용하였다. 추진기관의 압력 곡선, 연소 시험 후 절개된 목삽입재 시편을 통하여 삭마 및 단열성능을 분석하였고, 리오셀계 탄소/페놀릭 복합재료의 열반응은 레이온계 탄소/페놀릭 재료와 유사하였다. 연소시험을 통한 결과를 바탕으로 국산 리오셀계 탄소/페놀릭의 항공우주용 내열 부품으로의 적용 가능성을 확인하였다.

탄소섬유직물/페놀 복합재료의 압축 특성 (Compressive Characteristics of Carbon Fabric-Phenol Composites)

  • 박동창;김성수;김병철;이대길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.178-181
    • /
    • 2004
  • In this work, the carbon fabric reinforced phenolic composite is applied for heavy-duty journal bearings. The through thickness compressive strength (TTCS), which is one of the most important characteristics for the bearing material, is measured and analyzed with respect to the stacking sequence and composite thickness. Also, the coefficient of thermal expansion (CTE) and thermal conductivity of the composite in the thickness direction were measured with respect to stacking sequence.

  • PDF

열경화성 복합재 로켓 방화벽의 파손 예측 (Failure Prediction of Thermo-Chemically Decomposing Composite for Rocket Thermal Insulators)

  • 이선표;이정윤
    • 한국추진공학회지
    • /
    • 제9권2호
    • /
    • pp.25-31
    • /
    • 2005
  • 카본-페놀릭 복합재로 제작된 로켓 방화벽이 운전조건 하에서 열-화학적 분해되는 것을 해석하기 위해 (1)의 논문에 기술된 열 및 기체확산을 수반하는 다공 탄성 복합재료의 거동이론을 적용하였다. 해석 대상의 구조 부재는 카울 링이며, 재료 내의 압력, 온도 및 층간 응력이 제시되었다. 특정 조건의 복합재 구조에 대한 해석의 결과는 재료 내의 발생하는 인장응력에 의해 플라이리프트를 나타내는 충간파손을 나타낸다. 해석 결과는 실제 구조의 파손과 모양 및 위치가 일치한다. 이 방법은 플라이리프트와 같은 파손을 피하기 위한 설계에 적용될 수 있다.

Controlling the Hardness and Tribological Behaviour of Non-asbestos Brake Lining Materials for Automobiles

  • Mathur, R.B.;Thiyagarajan, P.;Dhami, T.L.
    • Carbon letters
    • /
    • 제5권1호
    • /
    • pp.6-11
    • /
    • 2004
  • In spite of unparalleled combination of essential material properties for brake linings and clutch facings, replacement for asbestos is seriously called for since it is a health hazard. Once asbestos is replaced with other material then composition and properties of brake pad changes. In certain cases hardness of the material may be high enough to affect the rotor material. In this study, hardness of the brake pad has been controlled using suitable reinforcement materials like glass, carbon and Kevlar pulp. Brake pad formulations were made using CNSL (cashew net shell liquid) modified phenolic resin as a binder, graphite or cashew dust as a friction modifier and barium sulphate, talc and wollastonite as fillers. Influence of each component on the hardness value has been studied and a proper formulation has been arrived at to obtain hardness values around 35 on Scleroscopic scale. Friction and wear properties of the respective brake pad materials have been measured on a dynamometer and their performance was evaluated.

  • PDF

A Low-Density Graphite-Polymer Composite as a Bipolar Plate for Proton Exchange Membrane Fuel Cells

  • Dhakate, S.R.;Sharma, S.;Mathur, R.B.
    • Carbon letters
    • /
    • 제14권1호
    • /
    • pp.40-44
    • /
    • 2013
  • The bipolar plate is the most important and most costly component of proton exchange membrane fuel cells. The development of a suitable low density bipolar plate is scientifically and technically challenging due to the need to maintain high electrical conductivity and mechanical properties. Here, bipolar plates were developed from different particle sizes of natural and expanded graphite with phenolic resin as a polymeric matrix. It was observed that the particle size of the reinforcement significantly influences the mechanical and electrical properties of a composite bipolar plate. The composite bipolar plate based on expanded graphite gives the desired mechanical and electrical properties as per the US Department of Energy target, with a bulk density of 1.55 $g.cm^{-3}$ as compared to that of ~1.87 $g.cm^{-3}$ for a composite plate based on natural graphite (NG). Although the bulk density of the expanded-graphite-based composite plate is ~20% less than that of the NG-based plate, the I-V performance of the expanded graphite plate is superior to that of the NG plate as a consequence of the higher conductivity. The expanded graphite plate can thus be used as an electromagnetic interference shielding material.

고체 로켓 노즐의 경계층 해석과 유한차분법을 이용한 탄소/페놀릭의 열반응 해석 연구 (Analysis of Boundary Layer in Solid Rocket Nozzle and Numerical Analysis of Thermal Response of Carbon/Phenolic using Finite Difference Method)

  • 서상규;함희철;강윤구
    • 한국추진공학회지
    • /
    • 제22권1호
    • /
    • pp.36-44
    • /
    • 2018
  • 고체 로켓 추진기관 노즐의 내열재로 사용되는 탄소/페놀릭 복합재료의 열반응 수치해석을 수행하였다. 본 논문에서 탄소/페놀릭 재료의 열반응 해석은 (1) 로켓 노즐벽에서 대류열전달계수를 구하기 위한 연소가스의 경계층 적분방정식 수치해석과 (2) 삭마두께, 숯깊이 및 온도를 계산하기 위한 탄소/페놀릭의 열반응(열분해, 삭마)을 고려한 1차원 열전도 해석으로 구성된다. 시험결과와 해석결과를 비교 분석하였으며, 목삽입재 좌우 인접 부위를 제외하고 잘 일치하는 것을 확인 할 수 있었다.

Quantitative Assessment of Variation in Poroelastic Properties of Composite Materials Using Micromechanical RVE Models

  • Han, Su Yeon;Kim, Sung Jun;Shin, Eui Sup
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.175-183
    • /
    • 2016
  • A poroelastic composite material, containing different material phases and filled with fluids, serves as a model to formulate the overall ablative behaviors of such materials. This article deals with the assessment of variation in nondeterministic poroelastic properties of two-phase composite materials using micromechanical representative volume element (RVE) models. Considering the configuration and arrangement of pores in a matrix phase, various RVEs are modeled and analyzed according to their porosity. In order to quantitatively investigate the effects of microstructure, changes in effective elastic moduli and poroelastic parameters are measured via finite element (FE) analysis. The poroelastic parameters are calculated from the effective elastic moduli and the pore-pressure-induced strains. The reliability of the numerical results is verified through image-based FE models with the actual shape of pores in carbon-phenolic ablative materials. Additionally, the variation of strain energy density is measured, which can possibly be used to evaluate microstress concentrations.