• Title/Summary/Keyword: Carbon/PDMS

Search Result 49, Processing Time 0.025 seconds

Fabrication of Super Water Repellent Surfaces by Vacuum Plasma (진공 플라즈마 처리를 통한 초소수성 표면 제작 및 특성 평가)

  • Rha, Jong-Joo;Jeong, Yong-Soo;Kim, Wan-Doo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.143-147
    • /
    • 2008
  • Super-hydrophobic surfaces showed that contact angle of water was higher than 140 degrees. That surface could be made several methods such as Carbon nano tubes grown vertically, PDMS asperities arrays, hydrophobic fractal surfaces, and self assembled monolayers coated by CVD and so on. However, we fabricated super-hydrophobic surfaces with plasma treatments which were very cost efficient processes. Their surfaces were characterized by static contact angles, advancing, receding, and stability against UV irradiation. Optimal surfaces showed static contact angles were higher than 150 degrees. Super-hydrophobic property was remained after UV irradiation for one week.

Permeation behavior of olefin/nitrogen/hydrogen through PDMS dense and composite membranes

  • Choi, Seung-Hak;Kim, Jeong-Hoon;Shin, Hyo-Jin;Park, In-Jun;Roh, Jae-Sung;Kang, Deuk-Joo;Lee, Soo-Bok
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.137-138
    • /
    • 2003
  • The worldwide annual production of polyolefins amounted to 60 million tons in 2000. During the process, 1-2 wt% of the olefin monomers have been emitted and flared into the air, causing the huge energy consumption and severe carbon dioxide emission. Recently, membrane process has been proved to be the most competitive among other separation processes in terms of cost of equipments, energy consumption and safety in this application. The performance of membrane process highly depends on the membrane properties and thus, it is very important to develop good membrane materials and composite membranes. We prepared PMDS dense and composite membranes and studied basic permeation behaviors of a series of olefins(ethylene, propylene, 1 -butylene), nitrogen and hydrogen as model gases.

  • PDF

Transport Analysis of olefins & nitrogen through PDMS membranes

  • Kim, Jeong-Hoon;Shin, Hyo-Jin;Choi, Seung-Hak;Park, In-Jun;Lee, Soo-Bok
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.195-198
    • /
    • 2004
  • Annually, 60 millions tons of polyolefins including polyethylene and polypropylene, etc. are produced in the world. During the manufacturing process, 1-2wt% of olefin gases of total feedstock remains unreacted and incinerated into air. Because of high cost of olefins and hazardous emission of carbon dioxide and toxic gases in incineration process, it is of important to recover them efficiently.(omitted)

  • PDF

Fabrication of Vertically Oriented ZnO Micro-crystals array embedded in Polymeric matrix for Flexible Device (수열합성을 이용한 ZnO 마이크로 구조의 성장 및 전사)

  • Yang, Dong Won;Lee, Won Woo;Park, Won IL
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.31-37
    • /
    • 2017
  • Recently, there has been substantial interest in flexible and wearable devices whose properties and performances are close to conventional devices on hard substrates. Despite the advancement on flexible devices with organic semiconductors or carbon nanotube films, their performances are limited by the carrier scattering at the molecular to molecular or nanotube-to-nanotube junctions. Here in this study, we demonstrate on the vertical semiconductor crystal array embedded in flexible polymer matrix. Such structures can relieve the strain effectively, thereby accommodating large flexural deformation. To achieve such structure, we first established a low-temperature solution-phase synthesis of single crystalline 3D architectures consisting of epitaxially grown ZnO constituent crystals by position and growth direction controlled growth strategy. The ZnO vertical crystal array was integrated into a piece of polydimethylsiloxane (PDMS) substrate, which was then mechanically detached from the hard substrate to achieve the freestanding ZnO-polymer composite. In addition, the characteristics of transferred ZnO were confirmed by additional structural and photoluminescent measurements. The ZnO vertical crystal array embedded in PDMS was further employed as pressure sensor that exhibited an active response to the external pressure, by piezoelectric effect of ZnO crystal.

Preparation and Properties of Siloxane Modified EPDM/HDPE/Carbon black Composite (실록산 변성 에틸렌프로필렌 고무/고밀도 폴리에틸렌/카본블랙 복합체의 제조와 물성)

  • Lee, Byoung-Chul;Kang, Doo-Whan
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.80-85
    • /
    • 2007
  • Maleic anhydride (MA) modified ethylene-propylene-diene terpolymer (MEPDM) was pre-pared from solution polymerization. MEPDM-g-PST copolymer was prepared by melt polymerization of male ate d EPDM and quaternary ammonium silyl polydimethylsiloxane -7,7,8,8- tetracyanoquinodimethane (TCNQ) adduct (PST) in internal mixer and MEPDM-g-PST/HDPE/CB (MPEC) was prepared by com-pounding HDPE, MEPDM-g-PST copolymer and carbon black (CB, 5, 10, 15, and 20 phr), and HDPE/ CB (PEC) by compounding HDPE and CB (5, 10, 15, and 20 phr), respectively. The structure of MEPDM-g-PST copolymer was confirmed by measuring the FTIR. The maximum grafting ratio of MA onto EPDM was 2.35%. The thermal and mechanical properties of the composites were measured and dispersion characteristics of CB in matrix show that CB in MPEC was better dispersed than that in PEC composite.

Preparation and Properties of Hollow Fiber Membrane for CO2/H2 Separation (이산화탄소/수소 분리용 중공사형 기체분리막의 제조 및 특성)

  • Hyung Chul Koh;Mi-jin Jeon;Sang-Chul Jung;Yong-Woo Jeon
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.222-232
    • /
    • 2023
  • In this study, a hollow fiber support membrane was prepared by a non-solvent induced phase separation (NIPS) method using a polysulfone (PSf). The prepared hollow fiber support membrane was coated with PDMS and Pebax to prepare a hollow fiber composite membrane. The prepared composite membrane was measured for permeance and selectivity for pure CO2, H2, O2 and N2. Gas separation performance of the module having the highest selectivity (CO2/H2) among the prepared composite membrane modules was measured according to the change in stage cut using simulated gas. The composition of the simulated gas used at this time was 70% CO2 and 30% H2. In the 1 stage experiment, it was possible to obtain values of about 60% of H2 concentration and 12% of H2 recovery. In order to overcome the low H2 concentration and recovery, 2 stage serial test was performed, and through this, it was possible to achieve 70% H2 concentration and 70% recovery. Through this, it was possible to derive a separation process configuration for CO2/H2 separation.

Highly Sensitive and Transparent Pressure Sensor Using Double Layer Graphene Transferred onto Flexible Substrate

  • Chun, Sungwoo;Kim, Youngjun;Jin, Hyungki;Jung, Hyojin;Park, Wanjun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.229.2-229.2
    • /
    • 2014
  • Graphene, an allotrope of carbon, is a two-dimensional material having a unique electro-mechanical property that shows significant change of the electrical conductance under the applied strain. In addition of the extraordinary mechanical strength [1], graphene becomes a prospective candidate for pressure sensor technology [2]. However, very few investigations have been carried out to demonstrate characteristics of graphene sensor as a device form. In this study, we demonstrate a pressure sensor using graphene double layer as an active channel to generate electrical signal as the response of the applied vertical pressure. For formation of the active channel in the pressure sensor, two single graphene layers which are grown on Cu foil (25 um thickness) by the plasma enhanced chemical vapor deposition (PECVD) are sequentially transformed to the poly-di-methyl-siloxane (PDMS) substrate. Dry and wet transfer methods are individually employed for formation of the double layer graphene. This sensor geometry results a switching characteristic which shows ~900% conductivity change in response to the application of pulsed pressure of 5 kPa whose on and off duration is 3 sec. Additionally, the functional reliability of the sensor confirms consistent behavior with a 200-cycle test.

  • PDF

Preparation of Poly(Vinyl Acetate) in the Presence of Supercritical Carbon Dioxide (초임계이산화탄소를 이용한 폴리비닐아세테이트 합성)

  • Paek, Sang-Min;Noh, Seok-Kyun;Lyoo, Won Seok;Shim, Jae-Jin
    • Clean Technology
    • /
    • v.12 no.4
    • /
    • pp.191-197
    • /
    • 2006
  • Polymerization in supercritical carbon dioxide has been getting attention since it is easier to separate the remaining reactants from product polymer and since it is a cleaner process that produces neither wastewater nor air pollutants, compared to the conventional polymerization processes. In this study, poly(vinyl acetate) (PVAc) that is necessary in producing poly(vinyl alcohol) (PVA) with a lot of industrial applications was manufactured in the presence of supercritical carbon dioxide for the second time in the world. A poly(dimethylsiloxane)(PDMS)-derivative surfactant and three initiators were employed in the polymerization of vinyl acetate (VAc) at 338.15 K and 34.5 MPa. Investigation was carried out to find out the effect of the amounts and types of initiators and surfactants as well as the effect of reaction time on the yield and the molecular weight of PVAc. The weight average molecular weight (Mw) of PVAc was in the range of 60,000 ~ 140,000 g/mol, and the number average molecular weight was in the range of 30,000 ~ 70,000 g/mol. The yield of PVAc was spread over 10 ~ 80%, based on the amount of VAc monomer.

  • PDF

Si-Containing Nanostructures for Energy-Storage, Sub-10 nm Lithography, and Nonvolatile Memory Applications

  • Jeong, Yeon-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.108-109
    • /
    • 2012
  • This talk will begin with the demonstration of facile synthesis of silicon nanostructures using the magnesiothermic reduction on silica nanostructures prepared via self-assembly, which will be followed by the characterization results of their performance for energy storage. This talk will also report the fabrication and characterization of highly porous, stretchable, and conductive polymer nanocomposites embedded with carbon nanotubes (CNTs) for application in flexible lithium-ion batteries. It will be presented that the porous CNT-embedded PDMS nanocomposites are capable of good electrochemical performance with mechanical flexibility, suggesting these nanocomposites could be outstanding anode candidates for use in flexible lithium-ion batteries. Directed self-assembly (DSA) of block copolymers (BCPs) can generate uniform and periodic patterns within guiding templates, and has been one of the promising nanofabrication methodologies for resolving the resolution limit of optical lithography. BCP self-assembly processing is scalable and of low cost, and is well-suited for integration with existing semiconductor manufacturing techniques. This talk will introduce recent research results (of my research group) on the self-assembly of Si-containing block copolymers for the achievement of sub-10 nm resolution, fast pattern generation, transfer-printing capability onto nonplanar substrates, and device applications for nonvolatile memories. An extraordinarily facile nanofabrication approach that enables sub-10 nm resolutions through the synergic combination of nanotransfer printing (nTP) and DSA of block copolymers is also introduced. This simple printing method can be applied on oxides, metals, polymers, and non-planar substrates without pretreatments. This talk will also report the direct formation of ordered memristor nanostructures on metal and graphene electrodes by the self-assembly of Si-containing BCPs. This approach offers a practical pathway to fabricate high-density resistive memory devices without using high-cost lithography and pattern-transfer processes. Finally, this talk will present a novel approach that can relieve the power consumption issue of phase-change memories by incorporating a thin $SiO_x$ layer formed by BCP self-assembly, which locally blocks the contact between a heater electrode and a phase-change material and reduces the phase-change volume. The writing current decreases by 5 times (corresponding to a power reduction of 1/20) as the occupying area fraction of $SiO_x$ nanostructures varies.

  • PDF