• Title/Summary/Keyword: Carbohydrates

Search Result 1,108, Processing Time 0.038 seconds

Characteristics of phloem translocation of photoassimilates and herbicides (광합성산물과 제초제의 체관이행 기작)

  • Kim, Song-Mun;Hur, Jang-Hyun;Han, Dae-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 1998
  • The generally accepted idea for carbohydrate translocation in plants is an osmotic pressure flow hypothesis. According to the hypothesis, a high concentration of carbohydrate in the phloem of carbohydrate synthesis regions (source) causes a water influx into the phloem. The generated osmotic potential in the phloem is responsible for long distance carbohydrate transport through the positive hydrostatic pressure. In regions of carbohydrate utilization and storage (sink), translocated carbohydrates are continuously metabolized and compartmentalized, generating a concentration gradient between source and sinks. In this system, carbohydrates load into the phloem (phloem loading) and unload out of the phloem (phloem unloading). Phloem-mobile herbicides that are applied to plants are also translocated from the source to sinks. However, some experimental results reveal that the patterns of phloem translocation between carbohydrates and herbicides are different. The differences are due, in part, to the physico-chemical properties of herbicides and to the absence/presence of specific carrier(s) in the phloem.

  • PDF

Nitrogen Effects on Growth Responses and Carbohydrate Concentrations in Source and Sink Tissues of Two Rice Cultivars

  • Song, Beom-Heon;Lee, Chul-Won;Ryu, Shi-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.5
    • /
    • pp.288-293
    • /
    • 2000
  • Two rice cultivars (Oryza sativa L.), Hwa-seongbyeo of Japonica type and Taebackbyeo of Indica/Japonica type, were cultivated with hydroponic culture to examine nitrogen effects on the growth responses, contents and utilizations of carbohydrates, and the ripening velocity of grains with three different N levels. Plant height and tiller number were clearly increased to 80 ppm N level compared to 40 ppm N level and then they were slightly decreased in N level of 120 ppm. Higher dry weights were appeared with 80 ppm N level than did with other N levels, showing statistically differences in both cultivars and N levels, while dry weight of roots was heavier with decreasing the N levels. Therefore, T/R ratios were not significantly different among N levels, although there was statistically differences between rice cultivars. After the flowering stage, higher water-soluble carbohydrate (WSC) and water-insoluble carbohydrate (WISC) were contained in stem compared with other parts, showing that WISC of sheath and stem, unlike WSC, was significantly different among N levels. Starch of grain, WISC, was remarkedly increased from 3.0% at just after the flowering to 52.0% and 75.0% at 15 and 30 day after the flowering, respectively, showing that lower N application had faster accumulation of starch in rice grains. N would affect the contents of carbohydrates of each tissue, and starch accumulation in rice grains.

  • PDF

Carbohydrate and lipid spectroscopic molecular structures of different alfalfa hay and their relationship with nutrient availability in ruminants

  • Yari, Mojtaba;Valizadeh, Reza;Nnaserian, Abbas Ali;Jonker, Arjan;Yu, Peiqiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.11
    • /
    • pp.1575-1589
    • /
    • 2017
  • Objective: This study was conducted to determine molecular structures related to carbohydrates and lipid in alfalfa hay cut at early bud, late bud and early flower and in the afternoon and next morning using Fourier transform infrared spectroscopy (FT/IR) and to determine their relationship with alfalfa hay nutrient profile and availability in ruminants. Methods: Chemical composition analysis, carbohydrate fractionation, in situ ruminal degradability, and DVE/OEB model were used to measure nutrient profile and availability of alfalfa hay. Univariate analysis, hierarchical cluster analysis (CLA) and principal components analysis (PCA) were conducted to identify FT/IR spectra differences. Results: The FT/IR non-structural carbohydrate (NSCHO) to total carbohydrates and NSCHO to structural carbohydrate ratios decreased (p<0.05), while lignin to NSCHO and lipid CH3 symmetric to CH2 symmetric ratios increased with advancing maturity (p<0.05). The FT/IR spectra related to structural carbohydrates, lignin and lipids were distinguished for alfalfa hay at three maturities by PCA and CLA, while FT/IR molecular structures related to carbohydrates and lipids were similar between alfalfa hay cut in the morning and afternoon when analyzed by PCA and CLA analysis. Positive correlations were found for FT/IR NSCHO to total carbohydrate and NSCHO to structural carbohydrate ratios with non-fiber carbohydrate (by wet chemistry), ruminal fast and intermediately degradable carbohydrate fractions and total ruminal degradability of carbohydrates and predicted intestinal nutrient availability in dairy cows ($r{\geq}0.60$; p<0.05) whereas FT/IR lignin to NSCHO and CH3 to CH2 symmetric stretching ratio had negative correlation with predicted ruminal and intestinal nutrient availability of alfalfa hay in dairy cows ($r{\geq}-0.60$; p<0.05). Conclusion: FT/IR carbohydrate and lipid molecular structures in alfalfa hay changed with advancing maturity from early bud to early flower, but not during the day, and these molecular structures correlated with predicted nutrient supply of alfalfa hay in ruminants.

Quantitative Analysis of Carbohydrate, Protein, and Oil Contents of Korean Foods Using Near-Infrared Reflectance Spectroscopy (근적외 분광분석법을 이용한 국내 유통 식품 함유 탄수화물, 단백질 및 지방의 정량 분석)

  • Song, Lee-Seul;Kim, Young-Hak;Kim, Gi-Ppeum;Ahn, Kyung-Geun;Hwang, Young-Sun;Kang, In-Kyu;Yoon, Sung-Won;Lee, Junsoo;Shin, Ki-Yong;Lee, Woo-Young;Cho, Young Sook;Choung, Myoung-Gun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.3
    • /
    • pp.425-430
    • /
    • 2014
  • Foods contain various nutrients such as carbohydrates, protein, oil, vitamins, and minerals. Among them, carbohydrates, protein, and oil are the main constituents of foods. Usually, these constituents are analyzed by the Kjeldahl and Soxhlet method and so on. However, these analytical methods are complex, costly, and time-consuming. Thus, this study aimed to rapidly and effectively analyze carbohydrate, protein, and oil contents with near-infrared reflectance spectroscopy (NIRS). A total of 517 food samples were measured within the wavelength range of 400 to 2,500 nm. Exactly 412 food calibration samples and 162 validation samples were used for NIRS equation development and validation, respectively. In the NIRS equation of carbohydrates, the most accurate equation was obtained under 1, 4, 5, 1 (1st derivative, 4 nm gap, 5 points smoothing, and 1 point second smoothing) math treatment conditions using the weighted MSC (multiplicative scatter correction) scatter correction method with MPLS (modified partial least square) regression. In the case of protein and oil, the best equation were obtained under 2, 5, 5, 3 and 1, 1, 1, 1 conditions, respectively, using standard MSC and standard normal variate only scatter correction methods with MPLS regression. Calibrations of these NIRS equations showed a very high coefficient of determination in calibration ($R^2$: carbohydrates, 0.971; protein, 0.974; oil, 0.937) and low standard error of calibration (carbohydrates, 4.066; protein, 1.080; oil, 1.890). Optimal equation conditions were applied to a validation set of 162 samples. Validation results of these NIRS equations showed a very high coefficient of determination in prediction ($r^2$: carbohydrates, 0.987; protein, 0.970; oil, 0.947) and low standard error of prediction (carbohydrates, 2.515; protein, 1.144; oil, 1.370). Therefore, these NIRS equations can be applicable for determination of carbohydrates, proteins, and oil contents in various foods.

Determination of Soluble Carbohydrates in Soybean Seeds Using High Performance Liquid Chromatography with Evaporative Light Scattering Detection (증기화광산란 검출기를 이용한 콩 함유 수용성 탄수화물의 분석)

  • Kim, Gyeong-Ha;Hwang, Young-Sun;Ahn, Kyung-Geun;Kim, Gi-Ppeum;Kim, Min-Ji;Hong, Seung-Beom;Moon, Jung-Kyeong;Choung, Myoung-Gun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.7
    • /
    • pp.1062-1067
    • /
    • 2014
  • In the present study, a new analytical method was devised for the simultaneous determination of soluble carbohydrates in soybean seeds using high performance liquid chromatography/evaporative light scattering detection (HPLC/ELSD). The limit of quantification (LOQ) for soybean soluble carbohydrates ranged from 5.6~7.6 mg/kg using the HPLC/ELSD method and from 16.2~33.9 mg/kg using the high performance liquid chromatography/refractive index detection (HPLC/RID) method. Therefore, the HPLC/ELSD method was more sensitive than HPLC/RID. The precision values for retention time and peak area of the HPLC/ELSD method were evaluated by inter-day (n=5) and intra-day (n=10) assays using a standard solution. All precision values (CV<2.5%) for soybean soluble carbohydrates were acceptable and fulfilled international acceptance criteria. All linear calibration curves were obtained with a correlation coefficient of $R^2$ >0.999. The contents of soluble carbohydrates for the "Shingikong" (yellow soybean) and "Cheongjakong 3" (black soybean) samples were analyzed using the HPLC/RID and HPLC/ELSD methods. The difference in carbohydrate contents between the two detection methods was significant. Carbohydrate contents in the HPLC/ELSD method were higher than those in the HPLC/RID method. Overall, the HPLC/ELSD method showed satisfactory resolution with a favorable LOQ and reproducibility. Therefore, these results indicate that the HPLC/ELSD method may be applied to determine the contents of soluble carbohydrates in soybean seeds and related food stuffs.

Influence of Alkali Metal Cation Type on Ionization Characteristics of Carbohydrates in ESI-MS

  • Choi, Sung-Seen;Kim, Jong-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.1996-2000
    • /
    • 2009
  • Alkali metal salts were introduced to enhance the ionization efficiency of glucose and maltooligoses in electrospray ionization-mass spectrometry (ESI-MS). A mixture of the same moles of glucose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, and maltoheptaose was used. Salts of lithium, sodium, potassium, and cesium were employed as the cationizing agent. The ionization efficiency varied with the alkali metal cation types as well as the analyte sizes. Ion abundance distribution of the [M+$cation]^+$ ions of the carbohydrates varied with the fragmentor voltage. The maximum ion abundance at low fragmentor voltage was observed at maltose, while the maximum ion abundance at high fragmentor voltage shifted to maltotriose or maltotetraose for Na, K, and Cs. Variation of the ionization efficiency was explained with the hydrated cation size and the binding energy of the analyte and alkali metal cation.