• Title/Summary/Keyword: Carbide Drill

Search Result 37, Processing Time 0.021 seconds

A Study of Three Dimension Cutting;Tipped Twist Drilling (3차원절삭에 관한 연구(초경DRILL의 효율성 증가))

  • Lee, Yeong-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.168-170
    • /
    • 1994
  • Carbide-tipped twist drill of new type which is better than traditional H.S.S twist drill has been developed successfully to drill steel work-pieces with high speed. This new carbide drill consists of a characteristic flature of special shape of cutting edge, chip pocket, and flute. The special design of the chip pocket and the flute guarantees both periodic fracture and smooth transport of chips along the flute. The carbide-tipped twist drill also allows one to apply more drilling force than conventional one and produce holes with high accuracy.

  • PDF

A Study on the Cutting Performance of the Carbide Step drill (초경 Step Drill의 절삭성에 관한 연구)

  • 변상기;장성규;전언찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.1063-1067
    • /
    • 1997
  • A study of carbide step drill cutting ability is highly progessing the step drill with more then twice diameter rate is so difficult in regrinding and very easy to damage during machining. As the machining of step drill for closed hole is occur to breakage at small diamter poistion, so it is very difficult to machinine. Thue, in this experiment, We investance roundness and surface roghness by machining distance and were identifid that the first distance, 5~10m, was fine with 7 .mu.m but the arround of 15m was happened so much alternation. And we were indentified that after 20m was happend statable machining. The surface roughness was happened the same conditions. So application of stwp drill we think that the selection of cutting conditions need lots consideration and the study of step drill's diameter ratio ratio is carred out.

  • PDF

Development of Step Drill Geometry for Burr Minimization (버형성 최소화를 위한 스텝드릴 개발)

  • 장재은;고성림
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.183-191
    • /
    • 2002
  • Drilling tests were carried out using drills with various drill shapes for burr minimization. Final objective of this study is to develop compatible drill shape for minimization of burr formation. For experiments, general carbide drills, round drills, chamfered drills and step drills are designed and manufactured. Burrs are formed by various cutting conditions and in 4 different work materials. Laser sensor is used to measure burr geometries. Cutting forces in drilling are also measured and compared in every drill. As a result of the experiments, step drills with specific step angle and step diameter are suggested for burr minimization.

Development of a Drill Tool for CFRP Machining and Evaluation of Drilling Processing (탄소섬유 강화 복합재 가공용 드릴 공구 개발 및 홀 가공성 평가)

  • Sa, Min-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.8-13
    • /
    • 2020
  • Carbon fiber-reinforced plastics (CFRPs) are extremely strong and light fiber-reinforced plastics containing carbon fibers. CFRPs can be expensive to produce, but are commonly used wherever high strength-to-weight ratio and rigidity are required, such as in the aerospace, automotive, and ship superstructure industries. In CFRP drilling, the tool performance greatly varies depending on the tool shapes, cutting conditions, and diamond coating. This study developed a new type of tungsten carbide drill with multi-blade edges to evaluate the surface quality of CFRP materials according to the coating thickness of diamond-coated drills. Experiments on tool wear, surface roughness, and burr formation were conducted. The bore exit quality of a 12 mμ -coated drill was better than that of a 6 mμ -coated drill. The superior effects of the 12 mμ -coated drill and the good surface quality of CFRP were also demonstrated.

Development of Step Drill Geometry for Burr Minimization (버형성 최소화를 위한 스텝드릴 형상 개발)

  • 장재은;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1043-1046
    • /
    • 2002
  • In this paper, drill tests were carried out by modifying drill geometry for burr minimization. Final objective of this study is to develop compatible drill shape for minimization of burr formation. These experimented results with modified drill are measured with laser sensor after performing drilling with variable material. Simultaneously, the cutting force and the torque of various drill geometry have been observed with same cutting condition to judge drill stability. As a result, burr was minimized in step drill with 75$^{\circ}$ step angle at every material.

  • PDF

Information of Cutting Force in Drilling and Its Application (드릴가공시 절삭저항이 갖는 정보와 그 응용에 관한 연구)

  • Jeon, Eon-Chan;Lee, Dong-Ju;Nam, Gung-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.4
    • /
    • pp.39-47
    • /
    • 1988
  • There are many methods in measuring the signal of cutting, but by measuring the multi-signal, we can pick up the wear and chipping of the tool more accurately. Hence, the present study is concerned with analysing the dynamic component as well as the static component measured by the tool dynamometer, finding out which signal is involved in each component, comparing the capability of the cemented carbide drill and the HSS drill, and discussing the chipping of the cemented carbide drill. In addition, discussion is made about the characteristics of the frequency of the torque and thrust in connection with the dynamic component.

  • PDF

An Empirical Study on Drilling Characteristics of Titanium Carbide Metal Matrix Composites (1) (탄화 티타늄 금속기 복합재의 드릴가공 특성에 대한 경험적 고찰(1))

  • Lee, Jeong-Keun
    • Journal of Powder Materials
    • /
    • v.13 no.6 s.59
    • /
    • pp.445-449
    • /
    • 2006
  • The experimental data from the central composite design runs were utilized for mathematical models far the drilling characteristics containing linear, quadratic and interactive effects of the parameters such as volume fraction of TiC in the composites, drill speed, feed rate and drill diameter. The models were developed via stepwise selection where the insignificant effects were removed using t-test. The models were subjected to optimization of maximizing drill life and satisfying the other constraints.

Wear assessment of the WC/Co cemented carbidetricone drillbits in an open pit mine

  • Saeidi, Omid;Elyasi, Ayub;Torabi, Seyed Rahman
    • Geomechanics and Engineering
    • /
    • v.8 no.4
    • /
    • pp.477-493
    • /
    • 2015
  • In rock drilling, the most important characteristic to clarify is the wear of the drill bits. The reason that the rock drill bits fail with time is wear. In dry sliding contact adhesive wear deteriorates the materials in contact, quickly, and is the result of shear fracture in the momentary contact joins between the surfaces. This paper aims at presenting an overview of the assessment of WC/Co cemented carbide (CC) tricone bit in rotary drilling. To study wear of these bits, two approaches have been used in this research. Firstly, the new bits were weighted before they mounted on the drill rigs and also after completion their useful life to obtain bit weight loss percentage. The characteristics of the rock types drilled by using such this bit were measured, simultaneously. Alternatively, to measure contact wear, namely, matrix wear a micrometer has been used with a resolution of 0.02 mm at different direction on the tricone bits. Equivalent quartz content (EQC), net quartz content (QC), muscovite content (Mu), coarseness index (CI) of drill cuttings and compressive strength of rocks (UCS) were obtained along with thin sections to investigate mineralogical properties in detail. The correlation between effective parameters and bit wear were obtained as result of this study. It was observed that UCS shows no significant correlation with bit wear. By increasing CI and cutting size of rocks wear of bit increases.

Friction Welding of Sintered Hard Tool Materials to Metals and Its Quality Evaluation by AE (마찰용접에 의한 초경공구재와 금속간의 압접기술개발과 AE에 의한 품질평가)

  • 오세규;전태언;박일동;오명석;이주석
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.36-46
    • /
    • 1996
  • This paper deals with determinig the proper friction welding condition and analyzing various mechanical properties of friction welded joints of sintered carbide tool materials(K20, P25, and SKDX5 for the blade part of drill or press punch) to alloy steel (SKH4, SCM440 for the shank part of drill or press punch), the alloy steel to aluminum(A6061 for the interlayer material between the blade part and the shank) and sintered carbide tool materials to alumminum. And also acoustic emission test will be carried out during fiction welding to evaluate the weld quality.

  • PDF

Cutting Conditions of Carbide Insert Drill (초경 인서트 드릴의 절삭 조건에 관한 연구)

  • Choi, Sung-Yun;Hwang, Chul-Woong;Lee, Sang-Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.10-16
    • /
    • 2021
  • Drilling is a crucial process that takes up a significant amount of weight during machining operations. In addition, drill tip-type tools and related operations have been developed for manufacturing industries to achieve economic efficiency. In this study, SM45C carbon steel, widely used for machine structures, was utilized as the working material after quenching and tempering. Insert-tip types of carbide tools, such as TiN and TiAlN, were used as tool materials. Drilling conditions such as the spindle revolution, feed rate, step of cut, and tool diameter were used to measure roughness, roundness, and straightness using the orthogonal array table statistical method. The surface roughness, roundness, and straightness characteristics based on the conditions were analyzed using ANOVA. The results showed that the spindle speed and feed rate were the main factors influencing carbide insert-tip drilling under the same conditions as the experimental conditions.