• Title/Summary/Keyword: Carbide Coarsening

Search Result 25, Processing Time 0.028 seconds

Effect of Material Degradation and Austenite Grain Coarsening on the Creep life Prediction in 3.5 Ni-Cr-Mo-V Steel (3.5Ni-Cr-Mo-V 강의 크리프 수명예측에 재질열화 및 오스테나이트 결정립 조대화가 미치는 영향)

  • 홍성호;조현춘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2837-2845
    • /
    • 1994
  • Several methods have been developed to predict on the remaining life of the old power plants. However, Larson-Miller parameter, one of existing creep life prediction methods, has not reflected the effect of material degradatioin and grain size. So this study has been carried out to research the effects of material degradation and austenite grain coarsening on the life prediction of 3.5Ni-Cr-Mo-V steel. An experimental result shows that carbide coarsening has no significant effects on the creep rupture life and the Larson-Miller parameter, but grain coarsening has an important influence on the creep ruptrure life and the Larson-Miller parameter. Therefore Larson-Miller constant, K should be determined to consider on the chemical composition and the grain size of materials.

Effect of the Welding Methods on the Characteristics of Overlaying Seat-surfaces of Engine Valves (엔진밸브 시트 표면의 오버레이층 특성에 미치는 용접법의 영향)

  • 이병영;최병길
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.517-524
    • /
    • 2002
  • An overlaying of the seating surfaces of engine valves by OAW, GTAW or PTA weldings are common practice. The OAW method of a lower torch energy density compared to GTAW and PTA methods produces smoother deposits but the pain size at the vicinity of the interface is increased remarkably up to $30~50{\mu\textrm{m}}$ (that of base metal is about $10\mu\textrm{m}$). It's grain coarsening and the solute dilution are related to the decarburizing during OAW could be minimized by reducing the preheating temperature and by maintaining the carbide precipitates in base metal prior to welding. The formation of columnar structures and carbide precipitation zone in the vicinity of the GTAW welded interface, because of the high heat concentration, causes weakened zone on the valve seat face. The width of the reaction boundary zone is about $50\mu\textrm{m}$ for PTA and GTAW overlaying, and about $150\mu\textrm{m}$ for OAW welding. The smaller width of the reaction boundary zone is the less the solute-dilution rate. Thereby PTA welding may be recommended for overlaying of the seating surfaces.

Microstructure and Properties of HIPped P/M High Speed Steels (열간등압소결 된 고속도 공구강의 미세조직 및 기계적 특성)

  • Gang Li;Park, Woojin;S. Ahn
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1997.04a
    • /
    • pp.35-35
    • /
    • 1997
  • High$\cdot$speed steels (HSS) with a combination of good wear resistance and toughness are finding new, non-cutting applications such as rolls and rollers. In this paper, the research interests are focused on the microstructural evolution of a SMo-6W series high speed steel during HIPping and the effect of HIPping process parameters on its microstructure and properties. HIPping process variables includes; temperature, pressure and hold time. The microstructures of the HIPped HSS were examined by SEM, OM and X-ray diffraction whereas the properties measured were the relative density, hardness, and bend strength at room temperature. In HIPped materials, MC and M6C were the major carbides formed in a matrix of martensite. The effect of powder size on the microstructure and mechanical properties of HIPped materials was insignificant. However, HIPping temperature and hold time strongly affected the carbide size and distribution. The results show that at proper HIPping temperature and pressure conditions, the final products approach the full density ( > 99% RD). The particle boundaries were completely eliminated without an eminent microstructural coarsening. The bend strength was about 2.3 Gpa, which is superior to cast HSS. At excessive HIPping temperatures, rapid carbide coarsening occurred, thus deteriorating the mechanical properties of the P/M steels.

  • PDF

Characterization of vanadium carbide coating deposited by borax salt bath process

  • Aghaie-Khafri, M.;Daemi, N.
    • Advances in materials Research
    • /
    • v.1 no.3
    • /
    • pp.233-243
    • /
    • 2012
  • Thermal reactive diffusion coating of vanadium carbide on DIN 2714 steel substrate was performed in a molten borax bath at $950-1050^{\circ}C$. The coating formed on the surface of the substrate had uniform thickness ($1-12{\mu}m$) all over the surface and the coating layer was hard (2430-2700 HV), dense, smooth and compact. The influence of the kinetics parameters, temperature and time, has been investigated. Vanadium carbide coating was characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX) and X-ray diffraction analysis (XRD). The corrosion resistance of the coating was evaluated by potentiodynamic polarization in 3.5% NaCl solution. The results obtained showed that decrease of coating microhardness following increasing time and temperature is owing to the coarsening of carbides and coating grain size.

Carbide Precipitation Behavior During Normalizing Heat Treatment in Low-alloyed Cr-Mo-V-Ti Steel (Cr-Mo-V-Ti 저합금강에서 노멀라이징 열처리조건에 따른 석출물의 거동)

  • Kim, Hong-Ki;Na, Hye-Sung;Lee, Sang-Hoon;Kang, Chung-Yun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.2
    • /
    • pp.43-52
    • /
    • 2017
  • Heat treatment condition for dissolution of the M23C6 carbides in 2.25Cr-1Mo-V-Ti material for thermal power plant tube was investigated using a dilatometer method. 2.25Cr-1Mo-V-Ti material was heat-treated at $900{\sim}1,100^{\circ}C$ for 0, 10, 30 min to find the proper dissolution condition of M23C6 carbides. The phase identification and volume fraction of the carbide were measured by using OM, SEM, EBSD and TEM analysis. Optimal heat treatment condition of M23C6 carbide dissolution was selected by predicting dissolution temperature of carbide using Bs points appeared at dilatometer curve. Experimental results showed that the conditions of carbide dissolution was 900, 1,000, $1,100^{\circ}C$ for 30 min. Eventually, the optimal heat treatment condition for dissolution was 30 min at $1,000^{\circ}C$ considering the minimum coarsening of Austenite grain size.

Ultrasonic Nonlinearity Parameter Due to Precipitate and Dislocation (석출물과 전위에 기인한 초음파 비선형성 파라미터)

  • Kim, Chung-Seok;Park, Ik-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.131-138
    • /
    • 2008
  • The microstructural effects on the ultrasonic nonlinearity were investigated in isothermally degraded ferritic 2.25Cr-1Mo steel and low cycle fatigued copper. The variation in ultrasonic nonlinearity (${\beta}/{\beta}_0$) was interpreted as resulting from microstructural changes supported by the electron microscopy and X-ray diffraction, in addition to the mechanical test (Victor's hardness and ductile-brittle transition temperature). The ultrasonic nonlinearity of 2.25Cr-1Mo steel increased abruptly in the initial 1,000 h of degradation, and then changed little due to the coarsening of carbide and precipitation of stable $M_6C$ carbide during isothermal degradation. The ultrasonic nonlinearity of copper increased with the fatigue cycles due to the evolution of dislocation cell substructure.

The Evaluation of 2-25Cr-lMo Steels Degradation by the Electrochemical Polarization Method (전기화학적 분극특성을 이용한 2.25Cr-lMo 강의 열화도 평가)

  • 김지수;현양기;이재도;오세규
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.314-319
    • /
    • 2001
  • Most parts of facilities in domestic petroleum plants and power plants are needed to be abandoned, repaired or replaced, because in Korea they were built in the 1960s and, they have been used under severe conditions and exposed corrosive environments. 2.25Cr- lMo steels have excellent high-temperature mechanical properties. Therefore, the material have been widely used as heat exchanger tubes, boiler headers and its tubes in such industries. But, those microstructural evolutions in high temperature such as precipitation and carbide coarsening give a reason to degrade the material. Especially, in case of this material, carbides induced embrittlement(CIE) is the primary reason for degrading mechanical properties at over 50$0^{\circ}C$. In this paper, we introduce a electrochemical polarization method for detecting CIE quantitatively.

  • PDF

Effect of Austenitizing Temperature on Mechanical Properties in the Spheroidized Cr-Mo Steel (구상화 열처리한 Cr-Mo강의 오스테나이트화 온도가 기계적 성질에 미치는 영향)

  • Kou, D.H.;Yoon, J.H.;Park, S.J.;Kim, J.M.;Kang, H.J.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.4
    • /
    • pp.187-192
    • /
    • 2011
  • Effect of austenitizing temperatures on the impact value of the AISI 4140 steel after repetition of spheroidization and cold deep drawing treatment has been studied. Sufficient dissolution of carbide was shown after austenitizing at the high temperature of $950^{\circ}C$. Accordingly, the impact value was remarkably increased by tempering of this high temperature austenitized steel at the tempering temperature ranges between $570^{\circ}C$ and $630^{\circ}C$. On the other hand, remarkable decrease in the impact values and elongations were shown by tempering the low temperature-austenitized ($870^{\circ}C$) steel due to the coarsening of undissolved-carbide existed at the austenitizing temperature.

Degradation Degree Evaluation of Heat Resisting Steel by Electrochemical Technique (Part I : Mechanism and Its Possibility of Field Application) (電氣化學的 方法에 의한 耐熱鋼의 劣化度 測定 제1보)

  • 정희돈;권녕각
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.598-607
    • /
    • 1992
  • The environment degradation of structural steel under high temperature is one of the key phenomena governing the availability and life of plant. This degradation resulted from the microstructural changes due to the long exposure at high temperature affect the mechanical properties such as creep strength and toughness. For instance, boiler tube materials usually tend to degrade, after long term operation, by precipitates, spherodizing, coarsening, and change in chemical composition of carbides. In this study, the material degradation under high temperature exposure was investigated by evaluating the carbide precipitation. The electrochemical polarization method was facilitated to investigate the precipitation and coarsening of carbides. It was shown by the modified electrochemical potentiokinetic reactivation (EPR) tests that the passivation of Mo-rich carbides did not occur even in the anodic peak current (Ip) which indicates the precipitation of Mo$_{6}$C was also observed. And it was assured that special electrolytic cell assembled in this research can be used for the detection of Mo$_{6}$C precipitation in the field.eld.