• Title/Summary/Keyword: Car-to-Car Crash

Search Result 199, Processing Time 0.022 seconds

A Study on Car-to-car Frontal Impact Considering the Vehicle Compatibility (상호안전성을 고려한 차대차 정면 충돌 안전성 선행 연구)

  • Lee, Chang min;Shin, Jang ho;Kim, Hyun woo;Park, Kun ho;Park, Young joon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.1
    • /
    • pp.13-18
    • /
    • 2017
  • In recent years, NCAP regulations of many countries have induced automaker to improve the vehicle crashworthiness. But, the current NCAP regulations don't cover all types of traffic accidents. And rapid-increasing market share of compact cars and SUVs has brought for both consumer and automaker to pay more attention on crash compatibility. So, many countries have tried to develop the new crash test mode and update the present crash test mode. Especially, Euro NCAP has been developing a new impact protocol of the car-to-car frontal offset impact including the crash compatibility assessment. There are plans to introduce this new protocol in 2020, and it will be replaced the current Euro NCAP frontal offset impact. The test dummy in the front seats of this new test mode will be changed from 50% Hybrid-III male to 50% THOR male. This paper will address the vehicle responses, the occupant responses and the vehicle compatibility performance from a full vehicle crash test using the new car-to-car frontal offset test protocol of Euro NCAP.

Experimental Study on the Small Overlap Frontal Crash Test Method (국부정면충돌 시험방법에 관한 실험적 연구)

  • Kim, Dea Up;Woo, Chang Gi
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.205-213
    • /
    • 2017
  • In order to improve occupant protection in frontal crash, the IIHS introduced a small overlap frontal crash test in 2012. When the front corner of a car collides with another car or object, such as utility pole the test replicated the sequence of events. Because occupants move simultaneously forward and toward the side of the vehicle this test is challenging for some airbag and safety belt designs. In the small overlap frontal test, a car travels at 64 km/h toward a rigid barrier. A hybrid III dummy is positioned in the driver seat. 25% of the total width of the car strikes the barrier on the driver side. After review of small overlap frontal test protocol and overall rating, six run-throughs were performed according to the original test method.

A Simplified Method to Consider Forming Effects in a Car Crash Analysis (차량충돌해석 적용을 위한 간단화한 성형이력 고려 방법)

  • Huh, J.;Yoon, J.H.;Lim, J.H.;Park, S.H.;Huh, H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.259-262
    • /
    • 2008
  • This paper introduces a simplified method to consider forming effects in a car crash analysis. Representative value was used to consider forming effects simply. Four representative values, which are the mean value of thicknesses and effective plastic strains at nodes, the median of thicknesses and effective plastic strains at nodes, were evaluated. A crash analysis of a front side member shows that analysis results from the suggested methods are similar to those from the conventional method to consider forming effects. Use of the mean effective plastic strain shows the best results. A car crash analysis for a ULSAB/AVC model under the condition of US SINCAP were carried out to demonstrate the validity of the suggested method. Analysis results show that the error of suggested method is less than 1.5%.

  • PDF

A Study of Symmetry in Speed of Two Identical Vehicles in a Frontal Oblique Crash (동일 차량간 충돌 시 차량간 속도 대칭성 연구)

  • Myeonggyu, An;Ho, Kim;Young Myung, So
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.100-105
    • /
    • 2022
  • Oblique car to car frontal impact is quite common on the road and series of studies have been done to realize this in the lab. At a certain angle of oblique crash a car (ego) is to travel at a speed of xkm/h to hit the other car(traffic) which is approaching to ego at a speed of ykm/h. Symmetry of the speed of two vehicles, x vs. y, is studied with respect to the impulse of the ego vehicle as well as occupant injury. If there is symmetry of speed of two vehicles, number of case studies needed to analyze the oblique frontal impact may decrease: ex. in the case of 30degree oblique crash 40km/h (ego) / 80km/h (traffic) will show the similar behavior as 80km/h (ego) / 40km/h (traffic) crash.

Real-world Accident Study on Injury Characteristics of Elderly Driver in Car-to-Car Frontal Crashes (정면충돌 시 고령운전자 상해 특성에 관한 실사고 연구)

  • Hong, Seung-Jun;Park, Won-Pil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.12-19
    • /
    • 2011
  • Real-world accident cases were investigated to understand injury characteristics of the elderly driver. A total 10 cases of car-to-car frontal crash accidents from passenger car including SUV claimed to domestic car insurance company were reviewed. The injury characteristics of the elderly were analyzed from personal information (gender, age), medical treatment record (medical certificate, curative days), vehicle information (model, air-bag, seatbelt) and damage information. This study showed that elderly driver has higher possibility of thorax injury than non-elderly's. Moreover, Injury type and severity were more severe than non-elderly driver at similar type accident conditions. Also, elderly driver's medical treatment period needs 3 times more than non-elderly driver's.

Safety Analysis through Small Car Crash Simulation of Bollard with Square Rounding Sidewalk Block Frame (사각 라운딩 보도틀이 시공된 자동차진입 억제용 말뚝의 소형 승용차량 충돌 시뮬레이션을 통한 안전성 분석)

  • Park, Ji-Young;Ryu, Dong-Hwan;You, Eon-Zung;Kim, Seong-Kyum
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.407-415
    • /
    • 2022
  • In this study, a square rounding sidewalk block frame was developed considering the simplicity of construction and the superiority of aesthetics. In addition, it is possible to prevent damage, deformation, and settlement of adjacent sidewalk blocks due to plastic deformation during car impact load of installed bollad. A non-linear structural analysis was performed through finite element analysis to examine the performance of a car crash to which this was applied. Structural safety was confirmed through car crash simulation according to the direction of impact, and it is estimated that the function can be restored by replacing some parts in case of damage due to impact.

A Study on Injury Characteristics of Elderly in Car-to-Car Frontal Crashes (차대 차 정면층돌사고 시 고령자 상해 특성 연구)

  • Hong, Seung-Jun;Cho, Kyoung-Keun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.90-97
    • /
    • 2009
  • One of the most important factors that affect a person's risk of injury in a motor vehicle crash is the age of the person. This study investigates the characteristics of crash injuries among young, middle-aged and older drivers and occupants. Based on the comprehensive claim data from automobile insurance from 2000 to 2007, this study examines in great detail the drivers and occupants injury body regions and severity by age in car-to-car frontal crashes. It has been shown that elderly drivers and occupants suffer more injuries at a chest region compared to the middle-aged group. This research calls attention to the need for design to make vehicles more protective for older drivers in car-to car frontal crashes.

Optimization of Passenger Safety Restraint System for USNCAP by Response Surface Methodology (USNCAP에 대응하는 반응표면법을 이용한 조수석 안전구속장치 최적화)

  • Oh, Eun-Kyung;Lee, Ki-Sun;Son, Chang-Kyu;Kim, Dong-Seok;Chae, Soo-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.1-8
    • /
    • 2014
  • Safety performance of a new car is evaluated through USNCAP and their results in the star rating are provided to the consumers. It is very important to obtain high score of USNCAP to appeal their performance to consumers. Therefore the car companies have made the effort to improve their car safety performance. These efforts should satisfy the demand not only to get high score but also to pass the FMVSS, NHTSA regulations on safety. Huge numbers of car crash tests have been conducted on these bases by car companies. However physical tests spend too much cost and time, as an alternative way, the simulation on the car crash could be a solution to reduce the cost and time. Therefore the simulations have been widely conducted in car industry and various researches on this have been reported. In this study, restraint system had been optimized to minimize the injury of female passenger. Belted $5^{th}%ile$ female frontal crash test was selected from various test methods of USNCAP for the study. Initial velocity of the test was 56km/h. The combination injury probability of USNCAP was selected as an objective function and the injury limit value, which was defined in FMVSS, was set to an optimization constraint. Many researches that were similar to this study had been conducted, however most of them had limitation that interaction between airbag and safety belt had not been considered. Contrary to these researches, the interaction was considered in this study.

A Study of Vehicle and Occupant behavior during Side Impact at Different Impact Locations and Angles (측면 충돌 시 차량의 충돌 위치 및 충돌 각도에 따른 차량 및 승객 거동)

  • Junsuk Bae;Ho Kim;Young Myoung So
    • Journal of Auto-vehicle Safety Association
    • /
    • v.16 no.2
    • /
    • pp.34-43
    • /
    • 2024
  • As the autonomous vehicle is to come to the commercial market, passive safety of the vehicles becomes ever more important, since more responsibility of the car crash accidents will be imposed on the car makers. To cope with such a requirements, comprehensive studies are under progress in car OEM's as well as relevant institutes. In this study FE models of two identical family sedans are utilized to investigate the effect of crash parameters like crash impact locations, and impact angle. Relationship between structural behavior of the car and the dummy injury measures is studied.

Study on FWDB Frontal Vehicle Crash Test (FWDB 정면충돌시험에 대한 연구)

  • Kim, Joseph;Beom, Hyen-Kyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.31-37
    • /
    • 2010
  • In proportion to increasing interest in vehicle safety, many country have regulated vehicle safety and performed NCAP(New Car Assessment Program). However vehicles which had good results in these compliance and NCAP frontal crash test have caused problems such as the fork effect and over-riding in real car-to-car accidents. To complement these issues, new frontal crash test modes using new barrier like FWDB and PDB have been developed by EEVC WG15. In this paper, FWDB frontal crash test was performed and the result was compared with the full frontal crash test using the rigid wall in order to comprehend the characteristic of FWDB. The results of FWDB test were compared with one of USNCAP and KNCAP. Using USNCAP data, vehicle performance like deformation and wall force were studied. A comparative study of dummy injuries was made by using KNCAP result. The results showed that vehicle performance of FWDB test like displacement and effective acceleration was similar in spite of absorbing energy of FWDB due to the greater vehicle deformation of rigid wall test. In FWDB test, driver dummy head bottomed out but most of injuries were superior to the injury of rigid wall test.