• Title/Summary/Keyword: Car-body

Search Result 707, Processing Time 0.03 seconds

The Clinical Study of Ankle Fracture and Dislocation (족관절의 골절-탈구에 대한 임상적 고찰)

  • Kim, Ji Hoon;Song, Jae Gwang;Suh, Jin Soo
    • Journal of Korean Foot and Ankle Society
    • /
    • v.17 no.3
    • /
    • pp.182-188
    • /
    • 2013
  • Purpose: We evaluate clinical manifestations and radiologic features of ankle fracture & dislocation, as well as the usefulness of computed tomography on posterior ankle fracture & dislocation to study factors contributing to ankle fracture & dislocation. Material and Methods: Ankle dislocation was defined as the center of talar body being translated over the cortex of tibia on AP or lateral view on simple X-ray. Surgical treatments of 30 patients from January 2007 to March 2012 were categorized according to the injury mechanism, the direction of dislocation and fracture site. Joint involvement of posterior malleoalr fracture was evaluated through simple x-ray and computed tomography. We treated surgically if posterior malleolus fracture involves more than 25% of dital tibial articular surface. Thereafter, clinical outcomes were identified through radiographs and by using the AOFAS score. Results: The mean age was 42(13-78) years old, and slip down was the most common injury mechanism (13 cases). Car accident (6 cases) and fall accident (4 cases) were the next frequently found injury mechanisms. As for the types of ankle fracture, posterior fracture and dislocation (21 cases, 43.3%) was most commonly found. Out of these 21 cases, 15 cases involved trimalleolar fracture, and 19 cases were associated with posterior malleolar fracture. Danis-weber type B and C patients were 11 cases and 10 cases respectively. Articular involvement of posterior malleolar fracture turned out to be average 27.9%(5.1%~49.1%) on simple x-ray. The rate was evaluated as average 31.7%(12.6%~55.3%) on computed tomography which was conducted 15 times, and led us to more meaningful data. Conclusion: Anterolateral fracture and dislocation often accompanied open dislocation. Posterior fracture dislocation was most commonly found. Posterior malleolus was an important factor that ensures posterior stability of the ankle joint. Computed tomograph is useful to evaluate the articular involvement of posterior malleolar fracture.

An Observation of a Concept of the Post Sedan in Korea (한국에서의 포스트 세단의 개념 고찰)

  • Koo, Sang
    • Archives of design research
    • /
    • v.16 no.3
    • /
    • pp.91-100
    • /
    • 2003
  • The Korea's automotive industry have been achieved remarkable growth with many original models for over 28 years since the first original model Pony had developed. And most of the early models were licensed from the other country's makers. Now it is independent with our own technologies and designs, and the automobile is one of the major exporting products of Korea. In the early times the basic design concept of a passenger car didn't reflect the characteristics of the way of domestic life, but today's Korean developed cars have speciffic characters those are distinguished to others not only in the overall body shape but also in the package layout. And it is considered that the Korean cars would have different characteristics to the others in the future. These changes would come from the ways of life of the nations characteristics and they would influence to technologies of development. And the influence would be resulted as another type of sedan which has much differences to the current sedans. The main elements and the reasons for the 'post sedan' have been observed to specify the characters of the future Korean sedan in this research.

  • PDF

Validation of Inside Design Safety for the 119 Ambulance using a Structural Analysis (119 구급자동차의 구조해석을 통한 내부 설계 안전성 검증에 관한 연구)

  • Shin, Dong-Min;Kim, Hyung-Wook;Han, Yong-Taek
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.123-132
    • /
    • 2016
  • This study is the result of performing structural analysis in accordance with the new ambulance design of inside space using the new vehicle's bodywork. 3D design works were performed based on international standards and designed ambulance. And then it was tested by a shock of 10G to the ambulance car inside with respect to the vehicle body after that we looked into the consequences. At this time, it was carried out in consideration of its own weight and the weight of components according to the EN regulation. From the result of structural analysis, the internal frame and configured handrail in a variety of pipe did not have a relatively large stress load, but internal panel and cabinets has been interpreted to receive a large stress load at least over 50 MPa. When carried out reinforcement design in accordance with this analysis, the modification of thickness and shape could be necessary. On the basis of these findings, it is also expected that there could be a useful information to produce a more secure vehicle for paramedics and patients using a ambulance inside the vehicle.

A Preliminary Study on the Structural Performance of the Bumper-Beams for High-Strength Steel Applications (고장력강판 적용을 위한 자동차 범퍼빔 구조성능의 기초연구)

  • Kang, Jong-Su;Song, Myung-Hwan;Lim, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.78-84
    • /
    • 2017
  • Consistent efforts have been made to reduce the weight of automotive parts by using lightweight materials. This has resulted in the replacement of conventional steels in car body structures with high-strength steels, and the current usage rate has reached 50%. This study examines the structural stiffness and energy absorption capability of bumper beams made of high-strength steels. New types of bumper beam cross sections are proposed.The structural stiffness and maximum bending force were computed via finite element analysis as about 25tons and 7.5tons/mm, and there were no significant differences among the proposedcross sections. Dynamic analysis was also carried out to investigate the energy absorption capabilities of the bumper beams, and the effects of materials and thickness reduction were analyzed. High-strength steel can be used to achieve weight reduction with comparable structural performance to conventional bumper beams.

Band-Broadening Design of the Butler Matrix for V2X - 5.9 GHz Communication (V2X 차량 통신용 5.9 GHz 버틀러 매트릭스의 광대역화 설계)

  • Han, Dajung;Lee, Changhyeong;Park, Heejun;Kahng, Sungtek
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.4
    • /
    • pp.107-113
    • /
    • 2016
  • In this paper, we suggest a design method of a wide-band Butler matrix working at 5.9 GHz for V2X communication antennas. Since V2X communication needs beam-forming and beam-steering antennas to make transportation systems, mobile comm platforms, saturated frequency-resources, and signal TX-and-RX smart, multi-functional, resolved, and efficient utmost, respectively, the proper Butler matrix and its radiating elements as a low-profile geometry are realized. The constitutive components of the basic Butler matrix of a narrow band are designed first. And then, it is extended to a wide-band version to make its frequency-shift less affected by the event of the antenna system being mounted on a car body. The beam-forming and beam-steering performance is presented as the common feature tagged along with the different bandwidths of the frequency responses as the comparison between the narrow- and wide-band cases.

Research on Intelligent Game Character through Performance Enhancements of Physics Engine in Computer Games (컴퓨터 게임을 위한 물리 엔진의 성능 향상 및 이를 적용한 지능적인 게임 캐릭터에 관한 연구)

  • Choi Jong-Hwa;Shin Dong-Kyoo;Shin Dong-Il
    • The KIPS Transactions:PartB
    • /
    • v.13B no.1 s.104
    • /
    • pp.15-20
    • /
    • 2006
  • This paper describes research on intelligent game character through performance enhancements of physics engine in computer games. The algorithm that recognizes the physics situation uses momentum back-propagation neural networks. Also, we present an experiment and its results, integration methods that display optimum performance based on the physics situation. In this experiment on integration methods, the Euler method was shown to produce the best results in terms of fps in a simulation environment with collision detection. Simulation with collision detection was shown similar fps for all three methods and the Runge-kutta method was shown the greatest accuracy. In the experiment on physics situation recognition, a physics situation recognition algorithm where the number of input layers (number of physical parameters) and output layers (destruction value for the master car) is fixed has shown the best performance when the number of hidden layers is 3 and the learning count number is 30,000. Since we tested with rigid bodies only, we are currently studying efficient physics situation recognition for soft body objects.

A Study on Improving the Fatigue Life for a Woven Glass Fabric/Epoxy Laminate Composite Applied to Railway Vehicles (철도차량용 직물 유리섬유/에폭시 적층 복합재의 피로수명 향상 방안 연구)

  • Ko, Hee-Young;Shin, Kwang-Bok;Kim, Jung-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.203-209
    • /
    • 2010
  • In this study, the fatigue characteristics and life of a woven glass fabric/epoxy laminate composite applied to railway vehicles was evaluated. The fatigue test was conducted using a tension-tension load with a stress ratio R of 0.1 and frequency of 5 Hz. Two types of woven glass fabric/epoxy laminate composite was used in the fatigue test: with and without carbon/epoxy ply reinforcement. In addition, the fatigue life of the woven glass fabric/epoxy laminate composite was compared with that of aluminum 6005, which is used in the car body and underframe structures of railway vehicles. The test results showed that the failure strength and life of the woven glass fabric/epoxy laminate composite reinforced with three carbon/epoxy plies had a remarkable improvement compared with that of the bare specimen without reinforcement.

Development of a Theoretical Wheelset Model to Predict Wheel-climbing Derailment Behaviors Caused by Rolling Stock Collision (철도차량 충돌에 의한 타고오름 탈선거동 예측을 위한 단일윤축 이론모델 개발)

  • Choi, Se-Young;Koo, Jeong-Seo;You, Won-Hee
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.3
    • /
    • pp.203-210
    • /
    • 2011
  • This study formulates the theoretical wheel-set model to evaluate wheel-climbing derailments of rolling stock due to collision, and verifies this theory with dynamic simulations. The impact forces occurring during collision are transmitted from a car body to axles through suspensions. As a result of combinations of horizontal and vertical forces applied to axles, rolling stock may lead to derailment. The derailment type will depend on the combinations of the horizontal and vertical forces, flange angle and friction coefficient. According to collision conditions, the wheel-lift, wheel-climbing or roll-over derailments can occur between wheel and rail. In this theoretical derailment model of wheelset, the wheel-climbing derailment types are classified into Climb-over, Climb/roll-over, and pure Roll-over according to derailment mechanism between wheel and rail, and we proposed the theoretical conditions to generate each derailment mechanism. The theoretical wheel-set model was verified by dynamic simulations.

The case study on precise diagnosis for extending durability period of urban railroad cars (도시철도 차량 내구연한 연장을 위한 정밀진단 사례 연구)

  • Kim, Yong-Wook;Park, Hee-Chul
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.540-545
    • /
    • 2010
  • As the urban railroad durability period law has revised on march 19, 2009, the life cycle of urban railroad cars has lengthened to 40 years for the longest period. It seems to be attributed to the development of railroad car making technique along with their durability being longer thanks to the quality improvement of their materials and parts. As the stability of urban railroad cars is directly linked to the safety of passengers, safety should be considered first, and more precise examination is necessary for endurance extension. Hereupon, the rolling stocks with their durability near expiration should get precise diagnosis following the revised "RDG for urban railroad cars" This study aims to suggest a diagnosis method for the institute and the urban railroad operating body which enforce the revised diagnosis, through the case of Busan transportation corporation which firstly started the revised diagnosis after the durability related law has been revised.

  • PDF

Mechanical Behavior of Weldbond Joint of 1.2GPa Grade Ultra High Strength TRIP Steel for Car Body Applications (차체용 1.2GPa급 초고장력 TRIP강의 Weldbond 접합부의 기계적 거동)

  • Lee, Jong-Dae;Lee, So-Jeong;Bang, Jung-Hwan;Kim, Dong-Cheol;Kang, Mun-Jin;Kim, Mok-Soon;Kim, Jun-Ki
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.44-49
    • /
    • 2014
  • The effect of weldbond hybrid joining process on the mechanical behavior of single lap and L-tensile joints was investigated for the newly developed 1.2GPa grade ultra high strength TRIP(transformation induced plasticity) steel. In the case of single lap shear behavior, the weldbond joint of 1.2GPa TRIP steel showed lower maximum tensile load and elongation than that of the adhesive bonding only. It was considered to be due to the reduction of real adhesion area, which was caused by the degradation of adhesive near the spot weld, and the brittle fracture behavior of the spot weld joint. In the case of L-tensile behavior, however, the maximum tensile load of the weldbond joint of 1.2GPa TRIP steel was dramatically increased and the fracture mode was change to the base metal fracture which is desirable for the spot weld joint. These synergic effect of the weldbond hybrid joining process in 1.2GPa TRIP steel was considered to be due to the stress dissipation around the spot weld joint by the presence of adhesive which resulted in the change of crack propagation path.