• Title/Summary/Keyword: Car navigation system

Search Result 265, Processing Time 0.026 seconds

A Study on the Analysis of Interface Design on Car Navigation System (자동차 네비게이션 시스템 인터페이스 디자인 분석에 관한 연구)

  • 최인규
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.11a
    • /
    • pp.493-502
    • /
    • 2001
  • 본 연구는 자동차 정보시스템의 변화를 고찰하고, 정보를 제공하는 자동차 네비게이션 시스템의 인터페이스의 업무분석 및 행동분석을 통하여 문제점을 추출하고, 자동차 네비게이션 인터페이스 디자인의 유형을 분류하여 인터페이스 디자인 과정에서 고려해야하는 내용을 디자인 측면에서 연구한다.

  • PDF

Development of Vision-based Lateral Control System for an Autonomous Navigation Vehicle (자율주행차량을 위한 비젼 기반의 횡방향 제어 시스템 개발)

  • Rho Kwanghyun;Steux Bruno
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.19-25
    • /
    • 2005
  • This paper presents a lateral control system for the autonomous navigation vehicle that was developed and tested by Robotics Centre of Ecole des Mines do Paris in France. A robust lane detection algorithm was developed for detecting different types of lane marker in the images taken by a CCD camera mounted on the vehicle. $^{RT}Maps$ that is a software framework far developing vision and data fusion applications, especially in a car was used for implementing lane detection and lateral control. The lateral control has been tested on the urban road in Paris and the demonstration has been shown to the public during IEEE Intelligent Vehicle Symposium 2002. Over 100 people experienced the automatic lateral control. The demo vehicle could run at a speed of 130km1h in the straight road and 50km/h in high curvature road stably.

A Study on the Aids to Navigation System from the Viewpoint of Maneuverability and Combined Piloting of the Ships(I) (선박의 조종성과 복합항행견지에서 선로표식시스템에 관한 연구(I))

  • 구자윤;이동섭;전상엽;정태권;우병구
    • Journal of the Korean Institute of Navigation
    • /
    • v.16 no.3
    • /
    • pp.19-31
    • /
    • 1992
  • The Navigational System is the Fundamental System of Port Transportation System and comprises 3 Subsystems, say, the Waterway System, the Shiphandling System and the Support System. The Waterway System of Navigational System is the important and fundamental System for Traffic Safety inside the Port like a Car Road System on Land. This study aims to make a Guideline for the Optimal Waterway System of Port Development and Safety. The Conclusion of this Paper are drawn : 1) The complicated Shiphandling Operations should be avoided for the period of Physical night Time for eliminating the Human Errors. 2) For the Maneuverability and all-weather Combined Piloting the Inside Turn Point Buoy and Begin the-turn Buoy should be mounted with Racon(T) and Radar Reflector for foggy and bad weathers. 3) The Seabuoy located in the Approaching Area for Pilot Station and making Landfall should be mounted with Racon(G) and Morese A Light for giving a Hint of Pilot Station to the Captain on the Bridge, and these Equipments of Racon and Light should be operated normally and effectively even in a Heavy and stormy weathers. 4) A Basic Practical Expression, 1/2 L sin D, for calculating the Extra Width of Cutoff Turn Regions was derived Originally from the Viewpoint of Turn Maneuvers and Maneuverability of the Ship.

  • PDF

New Map-Matching Algorithm Using Virtual Track for Pedestrian Dead Reckoning

  • Shin, Seung-Hyuck;Park, Chan-Gook;Choi, Sang-On
    • ETRI Journal
    • /
    • v.32 no.6
    • /
    • pp.891-900
    • /
    • 2010
  • In this paper, a map-matching (MM) algorithm which combines an estimated position with digital road data is proposed. The presented algorithm using a virtual track is appropriate for a MEMS-based pedestrian dead reckoning (PDR) system, which can be used in mobile devices. Most of the previous MM algorithms are for car navigation systems and GPS-based navigation system, so existing MM algorithms are not appropriate for the pure DR-based pedestrian navigation system. The biggest problem of previous MM algorithms is that they cannot determine the correct road segment (link) due to the DR characteristics. In DR-based navigation system, the current position is propagated from the previous estimated position. This means that the MM result can be placed on a wrong link when MM algorithm fails to decide the correct link at once. It is a critical problem. Previous algorithms never overcome this problem because they did not consider pure DR characteristics. The MM algorithm using the virtual track is proposed to overcome this problem with improved accuracy. Performance of the proposed MM algorithm was verified by experiments.

Development and Evaluation of a System to Determine Position and Attitudes using In-Vehivle Seonsors (차량 내부 센서를 이용한 위치·자세 결정 시스템 구축 및 평가)

  • Kim, Ho Jun;Choi, Kyuong Ah;Lee, Im Pyeong
    • Spatial Information Research
    • /
    • v.21 no.6
    • /
    • pp.57-67
    • /
    • 2013
  • GPS based car navigation systems show significant problems in such environment as a tunnel, a road surrounded by high buildings. In this study, we thus propose a method to determine positions and attitudes using only in-vehicle sensory data without a GPS. To check the feasibility of this method, we constructed a system to acquire in-vehicle sensory data and reference data simultaneously. We acquired test data using this system, estimated the trajectory based on the proposed method and evaluated the accuracy of both the sensory data and the trajectory. The speed and angular velocities provided by the in-vehicle sensors include 1.1 km/h and 0.8 deg/s RMS errors, respectively. The estimated trajectory using these data shows 20.8 m RMS errors for a 15 minute drive. In future, if we further combine additional sensors such as a camera and a GPS, we can achieve a high accurate navigation system at a low cost without an expensive high-grade external IMU.

A Analysis of Highway′s Horizontal Alignment Using Kinematic GPS Surveying (동적 GPS 관측에 의한 도로의 평면선형 분석)

  • 이종출
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.1
    • /
    • pp.39-45
    • /
    • 2001
  • The design of highway in the future should be convenient using of a high-technology information, and it needs the design of alignment that is able to find the maximum vehicles inducement function fitting into Car Navigation System. Well then, the alignment of the existent highway needs to be analyzed with accuracy for improving design of existent highway, and it needs the design drawing of existent highway, and coordinates of the main point. This study gets data of the alignment of highway economically by Kinematic GPS surveying to analyze the alignment of existent highway, and horizontal alignment of highway is analyzed by this data. The result of study is included within range practical error, and alignment analysis can be known that there is practical.

  • PDF

A study on cargo shipment management system for coastal ships (연안선박 대상 화물 선적 관리시스템에 대한 연구)

  • Hoon Lee;Seung-Il Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.279-280
    • /
    • 2022
  • In the case of domestic coastal ships, an information system for the purpose of managing cargo loading, securing, and inspection processes is not in operation. It presents functional elements that meet the service requirements for information systems for more efficient execution of ship loading and unloading services at port. This is a study on the information system that manages the process of reservation, onboard arrangement, securing and inspection of sea freight.

  • PDF

Multi-layer Speech Processing System for Point-Of-Interest Recognition in the Car Navigation System (차량용 항법장치에서의 관심지 인식을 위한 다단계 음성 처리 시스템)

  • Bhang, Ki-Duck;Kang, Chul-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.1
    • /
    • pp.16-25
    • /
    • 2009
  • In the car environment that the first priority is a safety problem, the large vocabulary isolated word recognition system with POI domain is required as the optimal HMI technique. For the telematics terminal with a highly limited processing time and memory capacity, it is impossible to process more than 100,000 words in the terminal by the general speech recognition methods. Therefore, we proposed phoneme recognizer using the phonetic GMM and also PDM Levenshtein distance with multi-layer architecture for the POI recognition of telematics terminal. By the proposed methods, we obtained high performance in the telematics terminal with low speed processing and small memory capacity. we obtained the recognition rate of maximum 94.8% in indoor environment and of maximum 92.4% in the car navigation environments.

  • PDF

The System for Predicting the Traffic Flow with the Real-time Traffic Information (실시간 교통 정보를 이용한 교통 혼잡 예측 시스템)

  • Yu Young-Jung;Cho Mi-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1312-1318
    • /
    • 2006
  • One of the common services of telematics is the car navigation that finds the shortest path from source to target. Until now, some routing algorithms of the car navigation do not consider the real-time traffic information and use the static shortest path algorithm. In this paper, we prosed the method to predict the traffic flow in the future. This prediction combines two methods. The former is an accumulated speed pattern, which means the analysis results for all past speeds of each road by classfying the same day and the same time inteval. The latter is the Kalman filter. We predicted the traffic flows of each segment by combining the two methods. By experiment, we showed our algorithm gave better precise predicition than only using accumulated speed pattern that is used commonly. The result can be applied to the car navigation to support a dynamic shortest path. In addition, it can give users the travel information to avoid the traffic congestion areas.

Fast Ambiguity Resolution using Galileo Multiple Frequency Carrier Phase Measurement

  • Ji, Shengyue;Chen, Wu;Zhao, Chunmei;Ding, Xiaoli;Chen, Yongqi
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.179-184
    • /
    • 2006
  • Rapid and high-precision positioning with a Global Navigation Satellite System (GNSS) is feasible only when very precise carrier-phase observations can be used. There are two kinds of mathematical models for ambiguity resolution. The first one is based on both pseudorange and carrier phase measurements, and the observation equations are of full rank. The second one is only based on carrier phase measurement, which is a rank-defect model. Though the former is more commonly used, the latter has its own advantage, that is, ambiguity resolution will be freed from the effects of pseudorange multipath. Galileo will be operational. One of the important differences between Galileo and current GPS is that Galileo will provide signals in four frequency bands. With more carrier-phase data available, frequency combinations with long equivalent wavelength can be formed, so Galileo will provide more opportunities for fast and reliable ambiguity resolution than current GPS. This paper tries to investigate phase only fast ambiguity resolution performance with four Galileo frequencies for short baseline. Cascading Ambiguity Resolution (CAR) method with selected optimal frequency combinations and LAMBDA method are used and compared. To validate the resolution, two tests are used and compared. The first one is a ratio test. The second one is lower bound success-rate test. The simulation test results show that, with LAMBDA method, whether with ratio test or lower bound success rate validation criteria, ambiguity can be fixed in several seconds, 8 seconds at most even when 1 sigma of carrier phase noise is 12 mm. While with CAR method, at least about half minute is required even when 1 sigma of carrier phase noise is 3 mm. It shows that LAMBDA method performs obviously better than CAR method.

  • PDF