연구목적: 본 논문에서는 도플러 레이더를 활용하여 차량 운전자의 호흡과 심박을 추정하는 알고리즘을 제안하고 실험을 통해 연구의 가능성을 확인한다. 연구방법: 본 논문에서는 검출 신호의 peak 주파수 값과 가중치를 활용하는 weighted peak detection 기법을 제안한다. 정지 상태와 주행 상태에서의 실험을 통해 제안하는 두 알고리즘의 정확도를 분석한다. 연구결과: 제안하는 알고리즘을 통해 정지 상태에서 측정된 호흡과 심박 검출 정확도는 각각 95%, 96% 이상의 결과를 보였다. 또한 실제 주행 실험에서도 각 72%, 84% 이상의 정확도를 보여 주행 시의 활용 가능성을 확인하였다. 결론: 본 논문에서 제안하는 생세 신호 검출 기법은 차량 운전자의 호흡이나 심장 이상을 자동으로 검출함으로 운전자 본인 및 대형 교통사고를 예방하는 기술로 활용이 가능하다.
In this paper, we propose a method to achieve improved number plate detection for mobile devices by applying a multiple convolutional neural network (CNN) approach. First, we processed supervised CNN-verified car detection and then we applied the detected car regions to the next supervised CNN-verifier for number plate detection. In the final step, the detected number plate regions were verified through optical character recognition by another CNN-verifier. Since mobile devices are limited in computation power, we are proposing a fast method to recognize number plates. We expect for it to be used in the field of intelligent transportation systems.
정확한 음성 구간 검출은 음성 인식 및 음성 코딩 그리고 음성 통신 시스템 등과 같은 음성 어플리케이션의 성능에 큰 영향을 미친다. 본 논문에서는 실제 운전하고 있는 상태에서 다양한 차량 노이즈 환경의 음성 구간 검출 방법을 제안한다. 기존의 음성 구간 검출은 시간 에너지, 주파수 에너지, 영 교차율, spectral entropy 등 다양한 방법을 사용하였으며 잡음 환경에서 급격하게 성능이 저하되는 단점이 있었다. 본 논문에서는 기존의 spectral entropy를 기반으로 하여 MFB(Mel-frequency Filter Banks) spectral entropy, 기울기 FFT(Fast Fourier Transform) spectral entropy, 기울기 MFB spectral entropy를 이용한 음성 구간 검출 방법을 제안한다. MFB는 멜 스케일과 FFT를 곱한 것으로 멜 스케일은 인간이 소리를 인지할 때 주파수에 대해 비선형적인 스케일이며 음성의 특징을 잘 반영한다. 제안한 MFB spectral entropy 방법은 다양한 차량 잡음 환경에서 음성 및 비음성 분별 능력을 향상시킬 수 있으며 실험 결과 93.21%의 음성 구간 검출율을 나타내었다. 이는 기존의 spectral entropy 방법과 비교할 때 MFB를 이용한 음성 구간 검출 방법이 3.2%의 검출율이 향상되었다.
This paver has presented the architecture and function of the traffic signal enforcement system to detect and capture a image of the violating car in the street intersection. Also in the paper, the algorithm and method of detecting the violation car have been presented and the microwave detection method has been explained. And then this paper has showed the operation software interface for system and presented the experiment data carried out in the field.
본 논문에서는 카셰어링 서비스(car sharing service)에서 차량 상태 무인 검수를 위한 흠집 탐지 딥 러닝 모델을 제안한다. 기존의 차량 상태 검수 시스템은 대여 전, 후 사진에서 각각 흠집을 탐지하는 딥 러닝 모델과 탐지된 두 흠집 영상을 수작업으로 대조하여 새롭게 발생한 흠집을 탐색하는 두 단계로 구성되어 있다. 따라서 수동작업이 필요한 두 단계 모델을 한 단계로 줄이는 무인 흠집 탐지 모델을 위성영상에서 변화를 탐지하는 딥 러닝 모델에 전이 학습을 적용하여 구축한다. 그리고 광택 처리된 자동차 표면의 휘도가 비등방성이고 비전문가인 이용자가 일반 카메라로 촬영하기 때문에 정반사(specular reflection)가 흠집 탐지 성능에 크게 영향을 미친다. 따라서 정반사광으로 발생하는 오탐지를 감소시키기 위하여 정반사광 성분을 제거하는 전처리 과정을 적용한다. 이용자가 휴대폰 카메라로 촬영한 데이터에 대해 제안하는 시스템은 주관적인 측면과 정밀도(precision), 재현율(recall), F1, Kappa 척도면에서 각각 67.90%, 74.56%, 71.08%, 70.18%로서 높은 일치도를 보인다.
Fixed radiation portal monitors (RPMs) deployed at border, seaport, airport and key traffic checkpoints have played an important role in preventing the illicit trafficking and transport of nuclear and radioactive materials. However, the RPM is usually large and heavy and can't easily be moved to different locations. These reasons motivate us to develop a mobile radiation detection system. The objective of this paper is to report our experience on developing the mobile radiation detection system for search and detection of nuclear and radioactive materials during road transport. Field tests to characterize the developed detection system were performed at various speeds and distances between the radioactive isotope (RI) transporting car and the measurement car. Results of measurements and detection limits of our system are described in this paper. The mobile radiation detection system developed should contribute to defending public's health and safety and the environment against nuclear and radiological terrorism by detecting nuclear or radioactive material hidden illegally in a vehicle.
Detecting the ego-lane of a vehicle (the lane on which the vehicle is currently running) is one of the basic techniques for a smart car. Vision sensing is a widely-used method for the ego-lane detection. Existing studies usually find road lane lines by detecting edge pixels in the image from a vehicle camera, and then connecting the edge pixels using Hough Transform. However, this approach takes rather long processing time, and too many straight lines are often detected resulting in false detections in various road conditions. In this paper, we find the lane lines by scanning only a limited number of horizontal lines within a small image region of interest. The horizontal image line scan replaces the edge detection process of existing methods. Automatic thresholding and spatiotemporal filtering procedures are also proposed in order to make our method reliable. In the experiments using real road images of different conditions, the proposed method resulted in high success rate.
A method is proposed to achieve improved number plate detection for mobile devices by applying a two-step convolutional neural network (CNN) approach. Supervised CNN-verified car detection is processed first. In the second step, we apply the detected car regions to the second CNN-verifier for number plate detection. Since mobile devices are limited in computing power, we propose a fast method to detect number plates. We expect to use in the field of intelligent transportation systems (ITS).
차량에서 수집된 차량 운행 데이터는 차량에서 발생한 영상 데이터 및 센싱 데이터가 그대로 기록된 것이기 때문에 외부에서 차량에서 일어나는 일을 분석하여 판단할 수 있는 객관적인 데이터로 이용할 수 있다. 본 논문에서는 차량의 움직임 및 운전자의 조작 상태를 감지하고 분석하여 실제 도로 상황에서 차량 충돌 사고가 발생했을 때, 차량의 움직임, 운전자의 각종 조작상태, 충돌 펄스 및 충돌과 관련된 신호들을 감지하고 저장하여 분석하는 사고 상황감지 시스템을 설계 및 구현하였다. 제안한 시스템에서는 충돌 직전 운전자의 반응, 차량의 조작 상태 및 물리적인 움직임에 대한 정보를 제공한다. 이렇게 수집하여 분석한 차량 운행 데이터는 충돌 사고가 발생했을 때, 사고 원인을 규명하고 공정한 사고처리에 이용할 수 있으며, 운전자의 운전 습관을 파악하여 잘못된 운전 습관의 교정 및 유류비 절감 등의 효과를 얻을 수 있다.
기존의 번호판 검출 기법들은 대부분 일정한 거리와 방향에서 촬영되어 번호판의 크기가 유사하고, 배경이 단순한 차량 전면 영상에 적용되는 한계를 가지고 있어서 번호판의 위치가 변하거나 조명 혹은 크기의 변화에 매우 취약하다. 본 논문에서는 이러한 기존 기법들의 문제점들을 극복하기 위하여 에지기반 영역확장 기법을 사용하는 번호판 검출기법을 제안한다. 1단계에서는 입력영상에서 예지영상을 얻고 번호판의 기하학적 특성을 갖는 에지 영역들을 검출하여 이들을 번호판 검색영역으로 정한다. 검색영역의 에지들을 기반으로 주변의 화소들을 색상을 기반으로 영역확장을 통해 분할하여 번호판의 기하학적 특성을 만족하는 영역들을 번호판 후보영역으로 정한다. 후보영역들은 자동차의 조명등과 같은 구조물과의 위상특성을 고려하여 최종결정한다. 본 논문에서 제안하는 기법은 번호판의 문자가 검출되지 않는 경우에도 번호판 위치의 검출이 가능하고 특히 작은 크기의 번호판 검출에 유리하며, 크기와 상관없이 번호판을 검출할 수 있음을 실험을 통해 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.