• 제목/요약/키워드: Car body

검색결과 707건 처리시간 0.029초

차체의 유연성을 고려한 철도차량의 승차감 해석 (Study on the ride quality of vehicle with carbody flexibility)

  • 성재호;이강운;박길배;양희주
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.272-277
    • /
    • 2007
  • Generally railway vehicle runs on the rail with endless interaction between wheel and rail. Irregularity of rail causes the periodic motion of the vehicle. In association with this motion, the design of vehicle would be carried out in order to avoid the resonance between car-body and bogie. It may be seen that the first vertical bending mode of car-body contributes considerably to the vertical ride comfort level. In this paper to know the effect of the car-body first vertical bending mode on vertical ride comfort, the mode has been considered with dynamic model. I-DEAS program was used to get the car-body first vertical bending mode and VAMPIRE program was used to analyze ride comfort index(Wz) with FE interface file.

  • PDF

한국형 틸팅차량 차체구조물의 개발을 위한 개념설계 (study on conceptional design of car-body structure for Korean tilting train)

  • 문형석;유원희;최성규;엄기영;한성호;이수길
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 춘계학술대회 논문집
    • /
    • pp.303-311
    • /
    • 2002
  • A first evaluation of the possibilities of high speed trains in conventional railway in Korea have been investigated. The radius of curvature was considered the major problem with high-speed trains in Korea. If KNR(Korea National railway) likes to increase the speed, is then whether KNR shall construct straigthen the track or develop a train that can reduce travel time in curves The research concerns structural design of train car-body is to reduce heavy stress concentration. Using 3D solid modeling, Finite Element analysis and shape optimization combined with powerful postprocessing, graphical display and animation to achieve complete and accurate design and performance will be carried out further project Main purpose of this project is to provide korean tilting train car body's conceptional design. Based on first year research results, the design of car-body will be performed by train manufacture.

  • PDF

수계산을 통한 철도차량의 차체 용접이음부 강도 평가 (The introduction of the evaluation method for welded joints in car body structure by the manual analysis)

  • 정상웅;김재웅;장길수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1697-1702
    • /
    • 2008
  • The objective of the review is to introduce the evaluation method of welding joint designs by using forces extracted from FE models. This evaluation method is currently being used for the Southeastern Pennsylvania Transportation Authority (SEPTA) project in the United States by request of the customer Engineer. The evaluation method was applied to critical joints connected by Fillet or Partial Joint Penetration (PJP) welds in car body structure for SEPTA project. The additional manual analysis is required based on the fact that Technical Specification in the United States requires the Contractor to apply Complete Joint Penetration (CJP) welds to all structural connections in Car body. However, in the car body design for Septa project there are some areas where CJP welds are not applied due to structural and manufacturing problems.

  • PDF

Evaluating Methods of Vibration Exposure and Ride Comfort in Car

  • Park, Se Jin;Subramaniyam, Murali
    • 대한인간공학회지
    • /
    • 제32권4호
    • /
    • pp.381-387
    • /
    • 2013
  • Objective: This paper studies the method of measuring whole-body vibration in the car and terms associated. Background: Human exposure to vibration can be broadly classified as localized and whole-body vibration. The whole-body vibration affects the entire body of the exposed person. It is mainly transmitted through the seat surfaces, backrests, and through the floor to an individual sitting in the vehicle. It can affect the comfort, performance, and health of individuals. Method: Human responses to whole-body vibration can be evaluated by two main standards such as ISO 2631 and BS 6841. The vibration is measured at 8 axes - three translations at feet, 3 translations of hip and two translations of back proposed by Griffin. B&K's sensors used in this study are the 3-axes translational acceleration sensor to measure the translational accelerations at the hip, back and foot. Results: The parameters associated with the whole-body vibration in the car are frequency weightings, frequency weighted root-mean-square, vibration dose values, maximum transient vibration value, seat effective amplitude transmissibility, ride values and ride comfort. Conclusion: Studied the evaluating methods of vibration exposure and ride comfort. Application: Evaluation of whole-body vibration in the car.

Car Ride Safety and Comfort Analysis considering Low-frequency Vibration of Car Body

  • Kang, Sang-Wook
    • International Journal of Safety
    • /
    • 제6권1호
    • /
    • pp.7-10
    • /
    • 2007
  • In this paper, we found that modification of the local flexibility (or local stiffness) of the 4 parts on which shock absorbers are mounted in the vehicle body has some influence the level of ride safety and comfort. Multi-body dynamic analysis considering the flexibility of the vehicle body is performed using MSC/ADAMS and MSC/NASTRAN. More concretely speaking, natural frequencies and mode shapes computed by MSC/NASTRAN are used as input data for multi-body dynamic analysis in MSC/ADAMS. It is confirmed that the ride comfort can be improved by appropriately changing the local stiffness of the vehicle body through several simulations using MSC/ADAMS.

DADS를 이용한 초기 설계 단계에서의 경기용 차량의 핸들링 특성 해석 (Analysis of Race Car Handling Characteristics Using DADS in Initial Design Step)

  • 장운근
    • 한국산업융합학회 논문집
    • /
    • 제11권2호
    • /
    • pp.71-82
    • /
    • 2008
  • In this study, 3 dimensional non-linear race car vehicle model including Chassis, steering and suspension systems were modeled by using Multi-Body Dynamics Simulation Program, DADS 9.5(Dynamic Analysis and Design System),which was used in kinematic and dynamic analysis. A full race car vehicle dynamics model using DADS program was presented and analysis was carried out to estimate the handling characteristics that may be very useful to design a race car in early design stage. The simulation of vehicle handling behavior for step steering input was simulated and compared with different design parameters: torsional stiffness of the front and rear anti roll bars, the motion ratio of the front and rear suspension system, the location of the tie rod joint, in multibody dynamic model. Therefore this simulation model before race car construction in early design step will be helpful for race car designer to save time and limited budget.

  • PDF

고속주행을 위한 화차 한량의 사행동 해석 (Analysis on the Snake Motion of One Freight Car for High Speed Running)

  • 이승일;최연선
    • 한국철도학회논문집
    • /
    • 제6권3호
    • /
    • pp.149-155
    • /
    • 2003
  • The development of railway vehicles involves the proper selection of design parameters not only to achieve high speed but also to reduce the vibration of the train. In this study an analytical model of a freight car is developed to find the critical speed. The freight car can generate the snake motion of the lateral and yawing motion of the car body, the bogie, and the wheelset. Numerical analysis for the nonlinear equation motions with 17 degrees of freedom showed the running stability and critical speed due to the snake motion. Also, the vibration modes of the freight car was calculated using ADAMS/RAIL, which showed that the critical speed have the yawing modes of the car body and the bogie. Finally this paper shows that the snake motion of the vehicle can be controlled with the modifications of the design parameters.

차체의 유연성을 고려한 고속철도 차량 승차감 해석 (Ride Comfort Analysis of High-Speed Train with Flexible Car Bodies)

  • 신범식;최연선;구자춘;이상원;이승일
    • 대한기계학회논문집A
    • /
    • 제35권4호
    • /
    • pp.341-346
    • /
    • 2011
  • 고속철도 개발에 있어 승차감은 차량의 품질을 결정하는 중요한 요소이다. 본 논문에서는 고속철도 차량의 강체 및 유연체 모델 각각에 대해 속도증가에 따른 고속철도 차량의 승차감을 평가하였다. 가진원은 휠/레일 불균일에 의한 상하 진동만을 고려하였다. 속도 증가에 따른 차체의 진동을 계산하기 위해 강체 및 유연체 모델의 고유진동수와 모드형상을 계산하였다. 복잡한 형상의 압출재로 구성된 차체를 유연체로 모델링하기 위해 등가 물성치를 산출하여 등가 쉘로 모델링하였다. 계산된 차량의 진동으로 승차감을 평가한 결과, 강체 모델로 예측된 고속철도의 승차감은 고속에서 오히려 좋아지는 불합리한 결과가 도출 되었다. 반면 차량의 유연체 모드까지 고려하여 평가한 고속철도의 승차감은 속도 증가에 따라 승차감이 나빠지는 당연한 결과를 보여 주었다. 따라서 고속에서의 철도차량 개발은 차체의 유연체 특성을 고려해야함을 확인하였다.

복합차체의 낙뢰에 대한 인체 안전성 분석 (Safety Analysis for Passengers of Composite Car-body against Lightning Strikes)

  • 길경석;박대원;김성욱;박찬용;조영진
    • 한국전기전자재료학회논문지
    • /
    • 제22권6호
    • /
    • pp.526-531
    • /
    • 2009
  • In this paper, the safety for passengers of composite car-body against lightning strikes was analyzed by the application of an impulse generator which can produce impulse current up to 50 kA with 8/$20{\mu}s$ waveform. Potential difference on inside surface of the car-body was measured as a safety parameter for the passengers against lightning strikes. The potential difference between 20 em distant was 175 V at 37.67 kA, and it corresponds to 875 V between 1 m distant. The amount of charge flowing a passenger at 100 kA impulse current can be estimated to $0.31\;mA{\cdot}s$. This is much less than the limit amount of charge for human body, $30\;mA{\cdot}s$ which is presented by Koeppen and Osypka.