• Title/Summary/Keyword: Car Fires

Search Result 25, Processing Time 0.03 seconds

Analysis of a Car Fire Case Caused by the Overheating of a Diesel Particulate Filter (매연포집필터 과열로 발생한 디젤승용차화재 원인의 분석)

  • Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.31 no.1
    • /
    • pp.89-97
    • /
    • 2017
  • This study analyzed the case of diesel car fires that occurred while driving in a tunnel 5 days after maintenance at a car service center. The results of the investigation and analysis found that a large amount of white foreign matter adhered to the inside of the exhaust port and the insulating plate above the DPF (diesel particulate filter) installed in the middle of the exhaust pipe was melted and lost. In particular, the metal floor of the car above the DPF was molten and pierced, and the rubber mat placed on the metal floor was burnt. Moreover, while the exhaust pipe in front of the DPF showed no overheating mark, such a mark was observed in the exhaust pipe from the DPF to the exhaust port. Because these findings may appear only when the DPF is overheated and ignited, this car fire is believed to have been caused by internal overheating of the DPF. The car fire investigation of this study suggests that if white foreign matter is found in the inside of the exhaust port during a fire cause investigation of a diesel car, the cause of the fire should be determined by removing the DPF and examining the internal damage of the DPF.

Fire Suppression Experiment for Road Tunnel Low Pressure Water Spray Systems (도로터널 저압 물분무설비 화재진압 실험)

  • Choi, Byung-Il;Han, Yong-Shik;Kim, Myung-Bae;So, Soo-Hyun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.218-221
    • /
    • 2008
  • The real scale fire suppression test inside a road tunnel were carried out for water spray systems. The dimension of the tunnel is 7.5m in height and 11.6m in width. 3 different water spray nozzle systems with low operating pressure less than 3.5 bar were used in the experiment. Two types of fires were tested. One is a $1.4m^2$ heptane pool fire and the other is a 2000CC passenger car fire. From the experiment, the spray densities of tested systems were about $6.0\;l/min/m^2$ which is currunt domestic guideline. Although all the systems cannot extinguish the tested fires, it was found that they can reduce the tunnel temperature and have a capability to control and suppress the tested fire.

  • PDF

Analysis of an Arson fire of Motor Vehicle (자동차 방화사례의 분석)

  • Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.112-119
    • /
    • 2011
  • In this study, a fire cause of setting fire to one's own car to collect the insurance is analyzed. Through a close examination of causes of this car fire, it is suggested to improve current practices and institutions: (1) A collection system of fallen vehicle parts or fire debris in the fire site should be established; (2) A system of providing fire site information in detail should be established when a police station requests National Institute of Scientific Investigation (NISI) to examine causes of vehicle fires; (3) When a burned car is suspected of arson, a fire station and a police station should maintain a mutual cooperation system; (4) Procedures of examining the causes of vehicle arson in National Institute of Scientific Investigation (NISI) should be improved; and (5) Recognition of the examination of fire causes and correlation with analysis equipment should be changed.

Improvement Proposal for the Fire Suppression Systems of Open Parking Lots (개방형주차장의 소방설비 개선 제안)

  • Jeong, Keesin
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.1-8
    • /
    • 2016
  • In cars, the amount of combustibles, such as plastics, textiles, etc., have increased dramatically to improve the fuel efficiency of cars by reducing the gross vehicle weight according to the increases in an oil price and to reduce environmental problems. One or two cars were involved in a parking lot fire prior to the mid-2000 s. On the other hand, there were many parking lot fires where the entire car was destroyed due to increasing the use of plastics. In this study, the quantity of combustibles in a car was 316.2 kg over a total weight 1935 kg. This is 16.34% of total weight and 10 times greater than that three decades earlier. When a sprinkler is installed as a parking lot fire protection system as a substitute for water spray, the water discharge of the sprinkler must maintain the original density of water spray, $20lpm/m^2$. In addition, the use of a hose reel $CO_2$ system at pilotis parking lots must be prohibited because the hose reel $CO_2$ system has no adaptability for a car fire. Instead, this study proposes foam, dry powder, loaded stream systems be used in parking lot fire suppression systems.

Namsan 1.2.3 Tunnel accident disaster countermeasures (남산 1·2·3호 터널사고에 대한 재난대응방안)

  • Lee, Jeong-Il
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.1
    • /
    • pp.69-75
    • /
    • 2013
  • Namsan road are taxis in the engine room fires (07/14/2011 18:05) in the tunnel, and the driver of the vehicle was 100 passenger car and more than 500 evacuated were disasters. Pole road vehicles within the tunnel if there is a fire tunnel fire occurred at a two-way evacuation difficult and rapid evacuation is difficult and mass casualties are concerned, the number of casualties is feared. In this study, by considering the problems and improve the Namsan 1,2,3 Tunnel In case of fire, the best disaster response is to come up with ways.

Progressive collapse of reinforced concrete structures

  • Yagob, O.;Galal, K.;Naumoski, N.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.6
    • /
    • pp.771-786
    • /
    • 2009
  • In the past few decades, effects of natural hazards, such as earthquakes and wind, on existing structures have attracted the attention of researchers and designers. More recently, however, the phenomenon of progressive collapse is becoming more recognized in the field of structural engineering. In practice, the phenomenon can result from a number of abnormal loading events, such as bomb explosions, car bombs, accidental fires, accidental blast loadings, natural hazards, faulty design and construction practices, and premeditated terrorist acts. Progressive collapse can result not only in disproportionate structural failure, but also disproportionate loss of life and injuries. This paper provides an up-to-date comprehensive review of this phenomenon and its momentousness in structural engineering communities. The literature reveals that although the phenomenon of progressive collapse of buildings is receiving considerable attention in the professional engineering community, more research work is still needed in this field to develop a new methodology for efficient and inexpensive design to better protect buildings against progressive collapse.

A Study on the Need for Improvement of Fire Resistance Design in Underground Parking Lot due to Electric Vehicle Fire (전기자동차 화재에 따른 지하주차장 내화설계 개선 필요성 검토)

  • Kim, Hae-na;Park, Jun-Seo;Shin, Joung-Hyeon;Hong, Sang-Hun;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.235-236
    • /
    • 2022
  • Electric vehicle fires in underground parking lots are very dangerous, but it is judged that the current related laws and regulations do not change, which will cause problems. As a result of the analysis for the purpose of providing an electric vehicle in an underground parking lot, fire-resistance coating is essential as it can cause an explosion in the building members made of high-strength concrete when an electric vehicle fire occurs in an underground parking lot. Since a fire occurs, it is necessary to prevent electric vehicles from parking adjacent to each other.

  • PDF

Development of FCEV accident scenario and analysis study on dangerous distance in road tunnel (도로터널에서 수소차 사고시나리오 개발 및 위험거리에 대한 분석 연구)

  • Lee, Hu-Yeong;Ryu, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.659-677
    • /
    • 2022
  • Hydrogen is emerging as a next-generation energy source and development and supply of FCEV (hydrogen fuel cell electric vehicle) is expected to occur rapidly. Accordingly, measures to respond to hydrogen car accidents are required and researches on the safety of hydrogen cars are being actively conducted. In this study, In this study, we developed a hydrogen car accident scenarios suitable for domestic conditions for the safety evaluation of hydrogen car in road tunnels through analysis of existing experiments and research data and analyzed and presented the hazard distance according to the accident results of the hydrogen car accident scenarios. The accident results according to the hydrogen car accident scenario were classified into minor accidents, general fires, jet flames and explosions. The probability of occurrence of each accident results are predicted to be 93.06%, 1.83%, 2.25%, and 2.31%. In the case of applying the hydrogen tank specifications of FCEV developed in Korea, the hazard distance for explosion pressure (based on 16.5 kPa) is about 17.6 m, about 6 m for jet fire, up to 35 m for fireball in road tunnel with a standard cross section (72 m2).

A Fire Test Measuring the Heat Release Rate of Railway Car Interior Materials Satisfying the Korean Safety Guideline (안전기준을 만족하는 철도차량 내장재의 화재 열방출율 측정시험)

  • Park, Won-Hee;Lee, Duck-Hee;Jung, Woo-Sung
    • Fire Science and Engineering
    • /
    • v.23 no.4
    • /
    • pp.40-49
    • /
    • 2009
  • A large-scale fire test was conducted for interior materials from a vehicle installed within a fire test room (ISO 9705). The interior materials are satisfying the Korean guideline for the safety of rail vehicles, where the guideline has taken effect since December 2004 in Korea. The output of ignition source (gas burner) was increased in several controlled steps. The objectives of this test are to assess the fire performance in terms of ignition and flame spread on interior lining materials and to provide data on an enclosure fires involving train interior materials that grow to flashover. These data will be used to develop and calibrate models for fire growth on the interiors of the railway vehicle.

Development of Electric Vehicle Crash Scenarios and Safety Testing Methods Considering Road Infrastructure (도로 인프라를 고려한 전기자동차 충돌안전 시험법 개발)

  • Seung-Jun Hong;Jong-Wook, Lee;Gyu-Hyun, Kim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.16 no.2
    • /
    • pp.27-33
    • /
    • 2024
  • In this study, an analysis was conducted on internal and external factors related to fires in electric vehicles in order to improve the safety of electric vehicles against fire accidents. To conduct the analysis, field survey data conducted on actual electric vehicle fire accidents were used, and accident-related statistical data was used. Among them, as a result of analyzing the internal factors related to fire accidents in electric vehicles, it was confirmed that high-voltage batteries are an important factor in fire accidents caused by internal factors of electric vehicles. An analysis of external factors for fire accidents of electric vehicles was also conducted in this study. The largest number of electric vehicle accidents that occurred on public roads were mainly caused by physical external forces such as collisions. Therefore, strengthening the safety of this road infrastructure could be an additional solution to improve the fire safety of electric vehicles. As a result, based on car accident cases, two crash scenarios based on road infrastructure were derived, each of which simulates a high-speed frontal collision situation and a lower-end collision situation. Additionally, detailed test methods for these scenarios were developed.